HOME
*





Leyland Number
In number theory, a Leyland number is a number of the form :x^y + y^x where ''x'' and ''y'' are integers greater than 1. They are named after the mathematician Paul Leyland. The first few Leyland numbers are : 8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124 . The requirement that ''x'' and ''y'' both be greater than 1 is important, since without it every positive integer would be a Leyland number of the form ''x''1 + 1''x''. Also, because of the commutative property of addition, the condition ''x'' ≥ ''y'' is usually added to avoid double-covering the set of Leyland numbers (so we have 1 References External links

* {{DEFAULTSORT:Leyland Number Integer sequences ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

79 (number)
79 (seventy-nine) is the natural number following 78 and preceding 80. In mathematics 79 is: * An odd number. * The smallest number that can not be represented as a sum of fewer than 19 fourth powers. * The 22nd prime number (between and ) * An isolated prime without a twin prime, as 77 and 81 are composite. * The smallest prime number ''p'' for which the real quadratic field Q[] has Ideal class group, class number greater than 1 (namely 3). * A cousin prime with 83. * An emirp, because the reverse of 79, 97 (number), 97, is also a prime. * A Fortunate prime. * A circular prime. * A prime number that is also a Gaussian prime (since it is of the form ). * A happy prime. * A Higgs prime. * A lucky prime. * A permutable prime, with ninety-seven. * A Pillai prime, because 23 ! + 1 is divisible by 79, but 79 is not one more than a multiple of 23. * A regular prime. * A right-truncatable prime, because when the last digit (9) is removed, the remaining number (7) is still prime. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


593 (number)
500 (five hundred) is the natural number following 499 and preceding 501. Mathematical properties 500 = 22 × 53. It is an Achilles number and an Harshad number, meaning it is divisible by the sum of its digits. It is the number of planar partitions of 10. Other fields Five hundred is also *the number that many NASCAR races often use at the end of their race names (e.g., Daytona 500), to denote the length of the race (in miles, kilometers or laps). *the longest advertised distance (in miles) of the IndyCar Series and its premier race, the Indianapolis 500. Slang names * Monkey (UK slang for £500; USA slang for $500) Integers from 501 to 599 500s 501 501 = 3 × 167. It is: * the sum of the first 18 primes (a term of the sequence ). * palindromic in bases 9 (6169) and 20 (15120). 502 * 502 = 2 × 251 * vertically symmetric number 503 503 is: * a prime number. * a safe prime. * the sum of three consecutive primes (163 + 167 + 173). * the sum of the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


368 (number)
300 (three hundred) is the natural number following 299 and preceding 301. Mathematical properties The number 300 is a triangular number and the sum of a pair of twin primes (149 + 151), as well as the sum of ten consecutive primes (13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47). It is palindromic in 3 consecutive bases: 30010 = 6067 = 4548 = 3639, and also in base 13. Factorization is 30064 + 1 is prime Other fields Three hundred is: * In bowling, a perfect score, achieved by rolling strikes in all ten frames (a total of twelve strikes) * The lowest possible Fair Isaac credit score * Three hundred ft/s is the maximum legal speed of a shot paintball * In the Hebrew Bible, the size of the military force deployed by the Israelite judge Gideon against the Midianites () * According to Islamic tradition, 300 is the number of ancient Israeli king Thalut's soldiers victorious against Goliath's soldiers * According to Herodotus, 300 is the number of ancient Spartan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. For example, the integer 14 is a composite number because it is the product of the two smaller integers 2 ×  7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Factorization
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing. In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number (RSA-240) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit RSA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cyclotomic
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime ) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences. Definition For , let ; this is a primitive th root of unity. Then the th cyclotomic field is the extension of generated by . Properties * The th cyclotomic polynomial : \Phi_n(x) = \!\!\!\prod_\stackrel\!\!\! \left(x-e^\right) = \!\!\!\prod_\stackrel\!\!\! (x-^k) :is irreducible, so it is the minimal polynomial of over . * The conjugates of in are therefore the other primiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probable Prime
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare. Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer ''n'', choose some integer ''a'' that is not a multiple of ''n''; (typically, we choose ''a'' in the range ). Calculate . If the result is not 1, then ''n'' is composite. If the result is 1, then ''n'' is likely to be prime; ''n'' is then called a probable prime to base ''a''. A weak probable prime to base ''a'' is an integer that is a probable prime to base ''a'', but which is not a strong probable prime to base ''a'' (see below). For a fixed base ''a'', it is unusual f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Curve Primality Proving
In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and , in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing (and proving) followed quickly. Primality testing is a field that has been around since the time of Fermat, in whose time most algorithms were based on factoring, which become unwieldy with large input; modern algorithms treat the problems of determining whether a number is prime and what its factors are separately. It became of practical importance with the advent of modern cryptography. Although many current ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutativity
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1124 (number)
1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000. A group of one thousand things is sometimes known, from Ancient Greek, as a chiliad. A period of one thousand years may be known as a chiliad or, more often from Latin, as a millennium. The number 1000 is also sometimes described as a short thousand in medieval contexts where it is necessary to distinguish the Germanic concept of 1200 as a long thousand. Notation * The decimal representation for one thousand is ** 1000—a one followed by three zeros, in the general notation ; ** 1 × 103—in engineering notation, which for this number coincides with : ** 1 × 103 exactly—in scientific normalized exponential notation ; ** 1 E+3 exactly—in scientific E notation. * The SI prefix for a thousand units is "kilo-", abbreviated to "k"—for instance, a kilogra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




945 (number)
900 (nine hundred) is the natural number following 899 and preceding 901. It is the square of 30 and the sum of Euler's totient function for the first 54 positive integers. In base 10 it is a Harshad number. It is also the first number to be the square of a sphenic number. In other fields 900 is also: * A telephone area code for "premium" phone calls in the North American Numbering Plan * In Greek number symbols, the sign Sampi ("ϡ", literally "like a pi") * A skateboarding trick in which the skateboarder spins two and a half times (360 degrees times 2.5 is 900) * A 900 series refers to three consecutive perfect games in bowling * Yoda's age in Star Wars Integers from 901 to 999 900s * 901 = 17 × 53, centered triangular number, happy number * 902 = 2 × 11 × 41, sphenic number, nontotient, Harshad number * 903 = 3 × 7 × 43, sphenic number, triangular number, Schröder–Hipparchus number, Mertens function (903) returns 0, little Schroeder number * 904 = 23 × 113 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]