HOME
*





Levi-Civita Field
In mathematics, the Levi-Civita field, named after Tullio Levi-Civita, is a non-Archimedean ordered field; i.e., a system of numbers containing infinite and infinitesimal quantities. Each member a can be constructed as a formal series of the form : a = \sum_ a_q\varepsilon^q , where a_q are real numbers, \mathbb is the set of rational numbers, and \varepsilon is to be interpreted as a positive infinitesimal. The support of a, i.e., the set of indices of the nonvanishing coefficients \, must be a left-finite set: for any member of \mathbb, there are only finitely many members of the set less than it; this restriction is necessary in order to make multiplication and division well defined and unique. The ordering is defined according to the dictionary ordering of the list of coefficients, which is equivalent to the assumption that \varepsilon is an infinitesimal. The real numbers are embedded in this field as series in which all of the coefficients vanish except a_0. Examples * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tullio Levi-Civita
Tullio Levi-Civita, (, ; 29 March 1873 – 29 December 1941) was an Italian mathematician, most famous for his work on absolute differential calculus (tensor calculus) and its applications to the theory of relativity, but who also made significant contributions in other areas. He was a pupil of Gregorio Ricci-Curbastro, the inventor of tensor calculus. His work included foundational papers in both pure and applied mathematics, celestial mechanics (notably on the three-body problem), analytic mechanics (the Levi-Civita separability conditions in the Hamilton–Jacobi equation) and hydrodynamics. Biography Born into an Italian Jewish family in Padua, Levi-Civita was the son of Giacomo Levi-Civita, a lawyer and former senator. He graduated in 1892 from the University of Padua Faculty of Mathematics. In 1894 he earned a teaching diploma after which he was appointed to the Faculty of Science teacher's college in Pavia. In 1898 he was appointed to the Padua Chair of Rational Mechanics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy Complete
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots in a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d\left(x_m, x_n\right) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: :#Every

Epsilon Numbers (mathematics)
In mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ''ε'' that satisfy the equation :\varepsilon = \omega^\varepsilon, \, in which ω is the smallest infinite ordinal. The least such ordinal is ''ε''0 (pronounced epsilon nought or epsilon zero), which can be viewed as the "limit" obtained by transfinite recursion from a sequence of smaller limit ordinals: :\varepsilon_0 = \omega^ = \sup \\,, where is the supremum function, which is equivalent to set union in the case of the von Neumann representation of ordinals. Larger ordinal fixed points of the exponential map are indexed by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surreal Numbers
In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals share many properties with the reals, including the usual arithmetic operations (addition, subtraction, multiplication, and division); as such, they form an ordered field. If formulated in von Neumann–Bernays–Gödel set theory, the surreal numbers are a universal ordered field in the sense that all other ordered fields, such as the rationals, the reals, the rational functions, the Levi-Civita field, the superreal numbers (including the hyperreal numbers) can be realized as subfields of the surreals. The surreals also contain all transfinite ordinal numbers; the arithmetic on them is given by the natural operations. It has also been shown (in von Neumann–Bernays–Gödel set theory) that the maximal class hyperreal field is isomorphic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transseries
In mathematics, the field \mathbb^ of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of objects. Each log-exp transseries represents a formal asymptotic behavior, and it can be manipulated formally, and when it converges (or in every case if using special semantics such as through infinite surreal numbers), corresponds to actual behavior. Transseries can also be convenient for representing functions. Through their inclusion of exponentiation and logarithms, transseries are a strong generalization of the power series at infinity (\sum_^\infty \frac) and other similar asymptotic expansions. The field \mathbb^ was introduced independently by Dahn-Göring and Ecalle in the respective contexts of model theory or exponential fields and of the study of analytic singularity and proof by Ecalle of the Dulac conjectures. It constitutes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Power Series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, whose terms are of the form a x^n where x^n is the nth power of a variable x (n is a non-negative integer), and a is called the coefficient. Hence, power series can be viewed as a generalization of polynomials, where the number of terms is allowed to be infinite, with no requirements of convergence. Thus, the series may no longer represent a function of its variable, merely a formal sequence of coefficients, in contrast to a power series, which defines a function by taking numerical values for the variable within a radius of convergence. In a formal power series, the x^n are used only as position-holders for the coefficients, so that the coefficient of x^5 is the fifth ter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Puiseux Series
In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + x^ + \cdots \end is a Puiseux series in the indeterminate . Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850.Puiseux (1850, 1851) The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator , a Puiseux series becomes a Laurent series in a th root of the indeterminate. For example, the example above is a Laurent series in x^. Because a complex number has th roots, a convergent Puiseux series typically defines functions in a neighborhood of . Puiseux's theorem, sometimes also called the Newton–Puiseux theorem, asserts that, given a polynomial equation P(x,y)=0 with complex coefficient ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hahn Series
In mathematics, Hahn series (sometimes also known as Hahn–Mal'cev–Neumann series) are a type of formal infinite series. They are a generalization of Puiseux series (themselves a generalization of formal power series) and were first introduced by Hans Hahn in 1907 (and then further generalized by Anatoly Maltsev and Bernhard Neumann to a non-commutative setting). They allow for arbitrary exponents of the indeterminate so long as the set supporting them forms a well-ordered subset of the value group (typically \mathbb or \mathbb). Hahn series were first introduced, as groups, in the course of the proof of the Hahn embedding theorem and then studied by him in relation to Hilbert's second problem. Formulation The field of Hahn series K\left ^\Gamma\right.html"_;"title="left[T^\Gamma\right">left[T^\Gamma\rightright/math>_(in_the_indeterminate_T)_over_a_field_K_and_with_value_group_\Gamma_(an_ordered_group)_is_the_set_of_formal_expressions_of_the_form :f_=_\sum__c_e_T^e with_c_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spherically Complete
In mathematics, a field ''K'' with an absolute value is called spherically complete if the intersection of every decreasing sequence of balls (in the sense of the metric induced by the absolute value) is nonempty: :B_1\supseteq B_2\supseteq \cdots \Rightarrow\bigcap_ B_n\neq \empty. The definition can be adapted also to a field ''K'' with a valuation ''v'' taking values in an arbitrary ordered abelian group: (''K'',''v'') is spherically complete if every collection of balls that is totally ordered by inclusion has a nonempty intersection. Spherically complete fields are important in nonarchimedean functional analysis, since many results analogous to theorems of classical functional analysis require the base field to be spherically complete. Examples *Any locally compact field is spherically complete. This includes, in particular, the fields Q''p'' of p-adic numbers, and any of their finite extensions. *Every spherically complete field is complete. On the other hand, C''p' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Henselian
In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are , , and . Definitions In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings. * A local ring ''R'' with maximal ideal ''m'' is called Henselian if Hensel's lemma holds. This means that if ''P'' is a monic polynomial in ''R'' 'x'' then any factorization of its image ''P'' in (''R''/''m'') 'x''into a product of coprime monic polynomials can be lifted to a factorization in ''R'' 'x'' * A local ring is Henselian if and only if every finite ring extension is a product of local rings. * A Henselian local ring is called strictly Henselian if its residue field is separably closed. * By abuse of termi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Valuation (algebra)
In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field. Definition One starts with the following objects: *a field and its multiplicative group ''K''×, *an abelian totally ordered group . The ordering and group law on are extended to the set by the rules * for all ∈ , * for all ∈ . Then a valuation of is any map : which satisfies the following properties for all ''a'', ''b'' in ''K'': * if and only if , *, *, with equality if ''v''(''a'') ≠ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]