Levi's Theorem
In Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional real Lie algebra ''g'' is the semidirect product of a solvable ideal and a semisimple subalgebra. One is its radical, a maximal solvable ideal, and the other is a semisimple subalgebra, called a Levi subalgebra. The Levi decomposition implies that any finite-dimensional Lie algebra is a semidirect product of a solvable Lie algebra and a semisimple Lie algebra. When viewed as a factor-algebra of ''g'', this semisimple Lie algebra is also called the Levi factor of ''g''. To a certain extent, the decomposition can be used to reduce problems about finite-dimensional Lie algebras and Lie groups to separate problems about Lie algebras in these two special classes, solvable and semisimple. Moreover, Malcev (1942) showed that any two Levi subalgebras are conjugate by an (inner) automorphism of the form :\exp(\mathrm(z ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nilradical Of A Lie Algebra
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible. The nilradical \mathfrak(\mathfrak g) of a finite-dimensional Lie algebra \mathfrak is its maximal nilpotent ideal, which exists because the sum of any two nilpotent ideals is nilpotent. It is an ideal in the radical \mathfrak(\mathfrak) of the Lie algebra \mathfrak. The quotient of a Lie algebra by its nilradical is a reductive Lie algebra \mathfrak^. However, the corresponding short exact sequence : 0 \to \mathfrak(\mathfrak g)\to \mathfrak g\to \mathfrak^\to 0 does not split in general (i.e., there isn't always a ''subalgebra'' complementary to \mathfrak(\mathfrak g) in \mathfrak). This is in contrast to the Levi decomposition: the short exact sequence : 0 \to \mathfrak(\mathfrak g)\to \mathfrak g\to \mathfrak^\to 0 does split (essentially because the quotient \mathfrak^ is semisimple). See also * Levi decomposition * Nilradical of a ring In algebra, the nilradical of a commutativ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Lie Algebra
In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities. Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra \mathfrak, one considers the loop algebra, L\mathfrak, formed by the \mathfrak-valued functions on a circle (interpreted as the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
George Mostow
George Daniel Mostow (July 4, 1923 – April 4, 2017) was an American mathematician, renowned for his contributions to Lie theory. He was the Henry Ford II (emeritus) Professor of Mathematics at Yale University, a member of the National Academy of Sciences, the 49th president of the American Mathematical Society (1987–1988), and a trustee of the Institute for Advanced Study from 1982 to 1992. The rigidity phenomenon for lattices in Lie groups he discovered and explored is known as Mostow rigidity. His work on rigidity played an essential role in the work of three Fields medalists, namely Grigori Margulis, William Thurston, and Grigori Perelman. In 1993 he was awarded the American Mathematical Society's Leroy P. Steele Prize for Seminal Contribution to Research. In 2013, he was awarded the Wolf Prize in Mathematics "for his fundamental and pioneering contribution to geometry and Lie group theory." Biography George (Dan) Mostow was born in 1923 in Boston, Massachusetts. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Langlands Decomposition
In mathematics, the Langlands decomposition writes a parabolic subgroup ''P'' of a semisimple Lie group as a product P=MAN of a reductive subgroup ''M'', an abelian subgroup ''A'', and a nilpotent subgroup ''N''. Applications A key application is in parabolic induction, which leads to the Langlands program In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic num ...: if G is a reductive algebraic group and P=MAN is the Langlands decomposition of a parabolic subgroup ''P'', then parabolic induction consists of taking a representation of MA, extending it to P by letting N act trivially, and inducing the result from P to G. See also * Lie group decompositions References Sources * A. W. Knapp, Structure theory of semisimple Lie groups. . Lie groups Algebraic groups {{Mathan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parabolic Induction
In mathematics, parabolic induction is a method of constructing representations of a reductive group from representations of its parabolic subgroups. If ''G'' is a reductive algebraic group and P=MAN is the Langlands decomposition of a parabolic subgroup ''P'', then parabolic induction consists of taking a representation of MA, extending it to ''P'' by letting ''N'' act trivially, and inducing the result from ''P'' to ''G''. There are some generalizations of parabolic induction using cohomology, such as cohomological parabolic induction and Deligne–Lusztig theory. Philosophy of cusp forms The ''philosophy of cusp forms'' was a slogan of Harish-Chandra, expressing his idea of a kind of reverse engineering of automorphic form theory, from the point of view of representation theory. The discrete group Γ fundamental to the classical theory disappears, superficially. What remains is the basic idea that representations in general are to be constructed by parabolic induction o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parabolic Subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup. For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups. Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (B,N) pair. Here the group ''B'' is a Borel subgroup and ''N'' is the normalizer of a maximal torus contained in ''B''. The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups. Parabolic subgroups Subgroups between a Borel subgroup ''B'' and the ambient group ''G'' are called parabolic subgroups. Parabolic subgroups ''P'' are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wedderburn Principal Theorem
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some Field (mathematics), field ''K''. The addition and multiplication operations together give ''A'' the structure of a ring (mathematics), ring; the addition and scalar multiplication operations together give ''A'' the structure of a vector space over ''K''. In this article we will also use the term algebra over a field, ''K''-algebra to mean an associative algebra over the field ''K''. A standard first example of a ''K''-algebra is a ring of Square matrix, square matrices over a field ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative Algebra
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over the field ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a field ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarification. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |