Landau Kernel
   HOME
*



picture info

Landau Kernel
The Landau kernel is named after the German number theorist Edmund Landau. The kernel is a summability kernel defined as: L_n (t) = \begin \frac & \text -1 \leq t \leq 1\\ 0 & \text \endwhere the coefficients c_n are defined as follows c_n = \int_^1 (1-t^2)^n \, dt Visualisation of the Landau kernel Using integration by parts, we can show that:c_n = \fracHence, this implies that the Landau Kernel can be defined as follows: L_n (t) = \begin (1-t^2)^n \frac & \text \in 1,1\ 0 & \text \end Plotting this function for different values of ''n'' reveals that as ''n'' goes to infinity, L_n(t) approaches the Dirac delta function In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire ..., as seen in the image to the right where the following functions are plotted: L_( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Edmund Landau
Edmund Georg Hermann Landau (14 February 1877 – 19 February 1938) was a German mathematician who worked in the fields of number theory and complex analysis. Biography Edmund Landau was born to a Jewish family in Berlin. His father was Leopold Landau, a gynecologist and his mother was Johanna Jacoby. Landau studied mathematics at the University of Berlin, receiving his doctorate in 1899 and his habilitation (the post-doctoral qualification required to teach in German universities) in 1901. His doctoral thesis was 14 pages long. In 1895, his paper on scoring chess tournaments is the earliest use of eigenvector centrality. Landau taught at the University of Berlin from 1899 to 1909, after which he held a chair at the University of Göttingen. He married Marianne Ehrlich, the daughter of the Nobel Prize-winning biologist Paul Ehrlich, in 1905. At the 1912 International Congress of Mathematicians Landau listed four problems in number theory about primes that he said were parti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Summability Kernel
In mathematics, a summability kernel is a family or sequence of periodic integrable functions satisfying a certain set of properties, listed below. Certain kernels, such as the Fejér kernel, are particularly useful in Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep .... Summability kernels are related to approximation of the identity; definitions of an approximation of identity vary, but sometimes the definition of an approximation of the identity is taken to be the same as for a summability kernel. Definition Let \mathbb:=\mathbb/\mathbb. A summability kernel is a sequence (k_n) in L^1(\mathbb) that satisfies # \int_\mathbbk_n(t)\,dt=1 # \int_\mathbb, k_n(t), \,dt\le M (uniformly bounded) # \int_, k_n(t), \,dt\to0 as n\to\infty, for every \delta>0. Note that if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Landau Kernels
Landau ( pfl, Landach), officially Landau in der Pfalz, is an autonomous (''kreisfrei'') town surrounded by the Südliche Weinstraße ("Southern Wine Route") district of southern Rhineland-Palatinate, Germany. It is a university town (since 1990), a long-standing cultural centre, and a market and shopping town, surrounded by vineyards and wine-growing villages of the Palatinate wine region. Landau lies east of the Palatinate forest, on the German Wine Route. It contains the districts (''Ortsteile'') of Arzheim, Dammheim, Godramstein, Mörlheim, Mörzheim, Nussdorf, Queichheim, and Wollmesheim. History Landau was first mentioned as a settlement in 1106. It was in the possession of the counts of Leiningen-Dagsburg-Landeck, whose arms, differenced by an escutcheon of the Imperial eagle, served as the arms of Landau until 1955. The town was granted a charter in 1274 by King Rudolf I of Germany, who declared the town a Free Imperial Town in 1291; nevertheless Prince-Bishop Emi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirac Delta Function
In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., f(x)) to its value at zero of its domain (f(0)), or as the weak limit of a sequence of bump functions (e.g., \delta(x) = \lim_ \frace^), which are zero over most of the real line, with a tall spike at the origin. Bump functions are thus sometimes called "approximate" or "nascent" delta distributions. The delta function was introduced by physicist Paul Dirac as a tool for the normalization of state vectors. It also has uses in probability theory and signal processing. Its validity was disputed until Laurent Schwartz developed the theory of distributions where it is defined as a linear form acting on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Kernel
In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson. Poisson kernels commonly find applications in control theory and two-dimensional problems in electrostatics. In practice, the definition of Poisson kernels are often extended to ''n''-dimensional problems. Two-dimensional Poisson kernels On the unit disc In the complex plane, the Poisson kernel for the unit disc is given by P_r(\theta) = \sum_^\infty r^e^ = \frac = \operatorname\left(\frac\right), \ \ \ 0 \le r < 1. This can be thought of in two ways: either as a function of ''r'' and ''θ'', or as a family of functions of ''θ'' indexed by ''r''. If D = \ is the open

Fejér Kernel
In mathematics, the Fejér kernel is a summability kernel used to express the effect of Cesàro summation on Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p .... It is a non-negative kernel, giving rise to an approximate identity. It is named after the Hungarian mathematician Lipót Fejér (1880–1959). Definition The Fejér kernel has many equivalent definitions. We outline three such definitions below: 1) The traditional definition expresses the Fejér kernel F_n(x) in terms of the Dirichlet kernel: where :D_k(x)=\sum_^k ^ is the ''k''th order Dirichlet kernel. 2) The Fejér kernel F_n(x) may also be written in a closed form expression as follows This closed form expression may be derived from the definitions used above. The proof of this result go ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirichlet Kernel
In mathematical analysis, the Dirichlet kernel, named after the German mathematician Peter Gustav Lejeune Dirichlet, is the collection of periodic functions defined as D_n(x)= \sum_^n e^ = \left(1+2\sum_^n\cos(kx)\right)=\frac, where is any nonnegative integer. The kernel functions are periodic with period 2\pi. 300px, Plot restricted to one period Dirac delta distributions of the Dirac comb">Dirac comb. The importance of the Dirichlet kernel comes from its relation to Fourier series. The convolution of with any function of period 2 is the ''n''th-degree Fourier series approximation to , i.e., we have (D_n*f)(x)=\int_^\pi f(y)D_n(x-y)\,dy=\sum_^n \hat(k)e^, where \widehat(k)=\frac 1 \int_^\pi f(x)e^\,dx is the th Fourier coefficient of . This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel. ''L''1 norm of the kernel function Of particular importance is the fact that the ''L''1 norm of ''Dn'' on , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]