LT Codes
In computer science, Luby transform codes (LT codes) are the first class of practical fountain codes that are near-optimal erasure correcting codes. They were invented by Michael Luby in 1998 and published in 2002. Like some other fountain codes, LT codes depend on sparse bipartite graphs to trade reception overhead for encoding and decoding speed. The distinguishing characteristic of LT codes is in employing a particularly simple algorithm based on the exclusive or operation (\oplus) to encode and decode the message.The ''exclusive or'' (XOR) operation, symbolized by ⊕, has the very useful property that ''A'' ⊕ ''A'' = 0, where ''A'' is an arbitrary string of bits. LT codes are ''rateless'' because the encoding algorithm can in principle produce an infinite number of message packets (i.e., the percentage of packets that must be received to decode the message can be arbitrarily small). They are ''erasure correcting codes'' because they can be used to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (including the design and implementation of hardware and software). Computer science is generally considered an area of academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fountain Code
In coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols. The term ''fountain'' or ''rateless'' refers to the fact that these codes do not exhibit a fixed code rate. A fountain code is optimal if the original ''k'' source symbols can be recovered from any ''k'' successfully received encoding symbols (i.e., excluding those that were erased). Fountain codes are known that have efficient encoding and decoding algorithms and that allow the recovery of the original ''k'' source symbols from any ''k’'' of the encoding symbols with high probability, where ''k’'' is just slightly larger than ''k''. LT codes were the first practical realizat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erasure Correcting Code
In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of ''k'' symbols into a longer message (code word) with ''n'' symbols such that the original message can be recovered from a subset of the ''n'' symbols. The fraction ''r'' = ''k''/''n'' is called the code rate. The fraction ''k’/k'', where ''k’'' denotes the number of symbols required for recovery, is called reception efficiency. Optimal erasure codes Optimal erasure codes have the property that any ''k'' out of the ''n'' code word symbols are sufficient to recover the original message (i.e., they have optimal reception efficiency). Optimal erasure codes are maximum distance separable codes (MDS codes). Parity check Parity check is the special case where ''n'' = ''k'' + 1. From a set of ''k'' values \_, a checksum is computed and appended to the ''k'' source values: :v_= - \sum_^k v_i. The set of ''k'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Michael Luby
Michael George Luby is a mathematician and computer scientist, CEO of BitRipple, Senior Research Scientist at the International Computer Science Institute (ICSI), former VP Technology at Qualcomm, co-founder and former Chief Technology Officer of Digital Fountain. In coding theory he is known for leading the invention of the Tornado codes and the LT codes. In cryptography he is known for his contributions showing that any one-way function can be used as the basis for private cryptography, and for his analysis, in collaboration with Charles Rackoff, of the Feistel cipher construction. His distributed algorithm to find a maximal independent set in a computer network has also been influential. Luby received his B.Sc. in mathematics from Massachusetts Institute of Technology in 1975. In 1983 he was awarded a Ph.D. in computer science from University of California, Berkeley. In 1996–1997, while at the ICSI, he led the team that invented Tornado codes. These were the fir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bipartite Graph
In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets U and V may be thought of as a coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. One often writes G=(U,V,E) to denote a bipartite graph whose partition has the parts U and V, with E denotin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exclusive Or Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , , , , , and . The negation of XOR is the logical biconditional, which yields true if and only if the two inputs are the same. It gains the name "exclusive or" because the meaning of "or" is ambiguous when both operands are true; the exclusive or operator ''excludes'' that case. This is sometimes thought of as "one or the other but not both". This could be written as "A or B, but not, A and B". Since it is associative, it may be considered to be an ''n''-ary operator which is true if and only if an odd number of arguments are true. That is, ''a'' XOR ''b'' XOR ... may be treated as XOR(''a'',''b'',...). Truth table The truth table of A XOR B shows that it outputs true whenever the inputs differ: Equivalences, elimination, and introd . |