HOME
*





LR(1)
In computer science, a canonical LR parser or LR(1) parser is an LR(k) parser for ''k=1'', i.e. with a single lookahead terminal. The special attribute of this parser is that any LR(k) grammar with ''k>1'' can be transformed into an LR(1) grammar. However, back-substitutions are required to reduce k and as back-substitutions increase, the grammar can quickly become large, repetitive and hard to understand. LR(k) can handle all deterministic context-free languages. In the past this LR(k) parser has been avoided because of its huge memory requirements in favor of less powerful alternatives such as the LALR and the LL(1) parser. Recently, however, a "minimal LR(1) parser" whose space requirements are close to LALR parsers, is being offered by several parser generators. Like most parsers, the LR(1) parser is automatically generated by compiler-compilers like GNU Bison, MSTA, Menhir, HYACC, LRSTAR. History In 1965 Donald Knuth invented the LR(k) parser (Left to right, Rightmost d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LALR
In computer science, an LALR parser or Look-Ahead LR parser is a simplified version of a canonical LR parser, to parse a text according to a set of production rules specified by a formal grammar for a computer language. ("LR" means left-to-right, rightmost derivation.) The LALR parser was invented by Frank DeRemer in his 1969 PhD dissertation, ''Practical Translators for LR(k) languages'', in his treatment of the practical difficulties at that time of implementing LR(1) parsers. He showed that the LALR parser has more language recognition power than the LR(0) parser, while requiring the same number of states as the LR(0) parser for a language that can be recognized by both parsers. This makes the LALR parser a memory-efficient alternative to the LR(1) parser for languages that are LALR. It was also proven that there exist LR(1) languages that are not LALR. Despite this weakness, the power of the LALR parser is sufficient for many mainstream computer languages,''LR Parsing: Theory a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LALR Parser
In computer science, an LALR parser or Look-Ahead LR parser is a simplified version of a canonical LR parser, to parse a text according to a set of production rules specified by a formal grammar for a computer language. ("LR" means left-to-right, rightmost derivation.) The LALR parser was invented by Frank DeRemer in his 1969 PhD dissertation, ''Practical Translators for LR(k) languages'', in his treatment of the practical difficulties at that time of implementing LR(1) parsers. He showed that the LALR parser has more language recognition power than the LR(0) parser, while requiring the same number of states as the LR(0) parser for a language that can be recognized by both parsers. This makes the LALR parser a memory-efficient alternative to the LR(1) parser for languages that are LALR. It was also proven that there exist LR(1) languages that are not LALR. Despite this weakness, the power of the LALR parser is sufficient for many mainstream computer languages,''LR Parsing: Theory a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LR Parser
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers, Minimal LR(1) parsers, and GLR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (Left-to-right, Rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name LR is often followed by a numeric qualifier, as in LR(1) or sometimes LR(''k''). To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symbols. Typically ''k'' is 1 and is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LR(0)
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers, Minimal LR(1) parsers, and GLR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (Left-to-right, Rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name LR is often followed by a numeric qualifier, as in LR(1) or sometimes LR(''k''). To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symbols. Typically ''k'' is 1 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




LR(k)
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers, Minimal LR(1) parsers, and GLR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (Left-to-right, Rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name LR is often followed by a numeric qualifier, as in LR(1) or sometimes LR(''k''). To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symbols. Typically ''k'' is 1 and is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple LR Parser
In computer science, a Simple LR or SLR parser is a type of LR parser with small parse tables and a relatively simple parser generator algorithm. As with other types of LR(1) parser, an SLR parser is quite efficient at finding the single correct bottom-up parse in a single left-to-right scan over the input stream, without guesswork or backtracking. The parser is mechanically generated from a formal grammar for the language. SLR and the more-general methods LALR parser and Canonical LR parser have identical methods and similar tables at parse time; they differ only in the mathematical grammar analysis algorithms used by the parser generator tool. SLR and LALR generators create tables of identical size and identical parser states. SLR generators accept fewer grammars than do LALR generators like yacc and Bison. Many computer languages don't readily fit the restrictions of SLR, as is. Bending the language's natural grammar into SLR grammar form requires more compromises and gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LL(1)
In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence. An LL parser is called an LL(''k'') parser if it uses ''k'' tokens of lookahead when parsing a sentence. A grammar is called an LL(''k'') grammar if an LL(''k'') parser can be constructed from it. A formal language is called an LL(''k'') language if it has an LL(''k'') grammar. The set of LL(''k'') languages is properly contained in that of LL(''k''+1) languages, for each ''k'' ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(''k'') parser. An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the grammar in linear time. Two nomenclative outlier parser typ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GNU Bison
GNU Bison, commonly known as Bison, is a parser generator that is part of the GNU Project. Bison reads a specification in the BNF notation (a context-free language), warns about any parsing ambiguities, and generates a parser that reads sequences of tokens and decides whether the sequence conforms to the syntax specified by the grammar. The generated parsers are portable: they do not require any specific compilers. Bison by default generates LALR(1) parsers but it can also generate canonical LR, IELR(1) and GLR parsers. In POSIX mode, Bison is compatible with Yacc, but also has several extensions over this earlier program, including * Generation of counterexamples for conflicts * Location tracking (e.g., file, line, column) * Rich and internationalizable syntax error messages in the generated parsers * Customizable syntax error generation, * Reentrant parsers * Push parsers, with autocompletion * Support for named references * Several types of reports (graphical, XML) on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shift-reduce Parser
A shift-reduce parser is a class of efficient, table-driven bottom-up parsing methods for computer languages and other notations formally defined by a grammar. The parsing methods most commonly used for parsing programming languages, LR parsing and its variations, are shift-reduce methods. The precedence parsers used before the invention of LR parsing are also shift-reduce methods. All shift-reduce parsers have similar outward effects, in the incremental order in which they build a parse tree or call specific output actions. Overview A shift-reduce parser scans and parses the input text in one forward pass over the text, without backing up. The parser builds up the parse tree incrementally, bottom up, and left to right, without guessing or backtracking. At every point in this pass, the parser has accumulated a list of subtrees or phrases of the input text that have been already parsed. Those subtrees are not yet joined together because the parser has not yet reached the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parsing
Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term ''parsing'' comes from Latin ''pars'' (''orationis''), meaning part (of speech). The term has slightly different meanings in different branches of linguistics and computer science. Traditional sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams. It usually emphasizes the importance of grammatical divisions such as subject and predicate. Within computational linguistics the term is used to refer to the formal analysis by a computer of a sentence or other string of words into its constituents, resulting in a parse tree showing their syntactic relation to each other, which may also contain semantic and other information (p-values). Some parsing algor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Grammar
In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics. Its applications are found in theoretical computer science, theoretical linguistics, formal semantics, mathematical logic, and other areas. A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that deter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Terminal Symbol
In computer science, terminal and nonterminal symbols are the lexical elements used in specifying the production rules constituting a formal grammar. ''Terminal symbols'' are the elementary symbols of the language defined by a formal grammar. ''Nonterminal symbols'' (or ''syntactic variables'') are replaced by groups of terminal symbols according to the production rules. The terminals and nonterminals of a particular grammar are two disjoint sets. Terminal symbols Terminal symbols are literal symbols that may appear in the outputs of the production rules of a formal grammar and which cannot be changed using the rules of the grammar. Applying the rules recursively to a source string of symbols will usually terminate in a final output string consisting only of terminal symbols. Consider a grammar defined by two rules. Using pictoric marks interacting with each other: # The symbol ר can become ди # The symbol ר can become д Here д is a terminal symbol because no rule ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]