HOME





LR(1)
A canonical LR parser (also called a LR(1) parser) is a type of bottom-up parsing algorithm used in computer science to analyze and process programming languages. It is based on the LR parsing technique, which stands for "left-to-right, rightmost derivation in reverse." Formally, a canonical LR parser is an LR(k) parser for ''k=1'', i.e. with a single lookahead terminal. The special attribute of this parser is that any LR(k) grammar with ''k>1'' can be transformed into an LR(1) grammar. However, back-substitutions are required to reduce k and as back-substitutions increase, the grammar can quickly become large, repetitive and hard to understand. LR(k) can handle all deterministic context-free languages. In the past this LR(k) parser has been avoided because of its huge memory requirements in favor of less powerful alternatives such as the LALR and the LL(1) parser. Recently, however, a "minimal LR(1) parser" whose space requirements are close to LALR parsers, is being offere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


LALR
In computer science, an LALR parser (look-ahead, left-to-right, rightmost derivation parser) is part of the compiling process where human readable text is converted into a structured representation to be read by computers. An LALR parser is a software tool to process (parse) text into a very specific internal representation that other programs, such as compilers, can work with. This process happens according to a set of production rules specified by a formal grammar for a computer language. An LALR parser is a simplified version of a canonical LR parser. The LALR parser was invented by Frank DeRemer in his 1969 PhD dissertation, ''Practical Translators for LR(k) languages'', in his treatment of the practical difficulties at that time of implementing LR(1) parsers. He showed that the LALR parser has more language recognition power than the LR(0) parser, while requiring the same number of states as the LR(0) parser for a language that can be recognized by both parsers. This makes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

LR Parsing
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, canonical LR(1) parsers, minimal LR(1) parsers, and generalized LR parsers (GLR parsers). LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (left-to-right, rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name "LR" is often followed by a numeric qualifier, as in "LR(1)" or sometimes "LR(''k'')". To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symbol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


LR Parser
In computer science, LR parsers are a type of bottom-up parsing, bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, canonical LR parser, canonical LR(1) parsers, canonical LR parser, minimal LR(1) parsers, and generalized LR parsers (GLR parsers). LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (left-to-right, rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parsing, bottom-up parse – not a top-down parsing, top-down LL parse or ad-hoc parse. The name "LR" is often followed by a numeric qualifier, as in "LR(1)" or sometimes "LR(''k'')". To avoid backtracking or guessing, the LR parser is allowed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


LR(0)
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, canonical LR(1) parsers, minimal LR(1) parsers, and generalized LR parsers (GLR parsers). LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (left-to-right, rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name "LR" is often followed by a numeric qualifier, as in "LR(1)" or sometimes "LR(''k'')". To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




LL(1)
In computer science, an LL parser (left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence. An LL parser is called an LL(''k'') parser if it uses ''k'' tokens of lookahead when parsing a sentence. A grammar is called an LL(''k'') grammar if an LL(''k'') parser can be constructed from it. A formal language is called an LL(''k'') language if it has an LL(''k'') grammar. The set of LL(''k'') languages is properly contained in that of LL(''k''+1) languages, for each ''k'' ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(''k'') parser. An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(''k'') grammar for every ''k''. For every LLR grammar there exists an LLR parser that parses the grammar in linear time. Two nomenclative outlier pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Simple LR Parser
In computer science, a Simple LR or SLR parser is a type of LR parser with small parse tables and a relatively simple parser generator algorithm. As with other types of LR(1) parser, an SLR parser is quite efficient at finding the single correct bottom-up parse in a single left-to-right scan over the input stream, without guesswork or backtracking. The parser is mechanically generated from a formal grammar for the language. SLR and the more general methods LALR parser and Canonical LR parser have identical methods and similar tables at parse time; they differ only in the mathematical grammar analysis algorithms used by the parser generator tool. SLR and LALR generators create tables of identical size and identical parser states. SLR generators accept fewer grammars than LALR generators like yacc and Bison. Many computer languages don't readily fit the restrictions of SLR, as is. Bending the language's natural grammar into SLR grammar form requires more compromises and gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Bottom-up Parsing
In computer science, parsing reveals the grammatical structure of linear input text, as a first step in working out its meaning. Bottom-up parsing recognizes the text's lowest-level small details first, before its mid-level structures, and leaves the highest-level overall structure to last. Bottom-up versus top-down The bottom-up name comes from the concept of a parse tree, in which the most detailed parts are at the bottom of the upside-down tree, and larger structures composed from them are in successively higher layers, until at the top or "root" of the tree a single unit describes the entire input stream. A bottom-up parse discovers and processes that tree starting from the bottom left end, and incrementally works its way upwards and rightwards. Compilers: Principles, Techniques, and Tools (2nd Edition), by Alfred Aho Alfred Vaino Aho (born August 9, 1941) is a Canadian computer scientist best known for his work on programming languages, compilers, and related algorithms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Parsing
Parsing, syntax analysis, or syntactic analysis is a process of analyzing a String (computer science), string of Symbol (formal), symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar by breaking it into parts. The term ''parsing'' comes from Latin ''pars'' (''orationis''), meaning Part of speech, part (of speech). The term has slightly different meanings in different branches of linguistics and computer science. Traditional Sentence (linguistics), sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams. It usually emphasizes the importance of grammatical divisions such as subject (grammar), subject and predicate (grammar), predicate. Within computational linguistics the term is used to refer to the formal analysis by a computer of a sentence or other string of words into its constituents, resulting in a par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Shift-reduce Parser
A shift-reduce parser is a class of efficient, table-driven bottom-up parsing methods for computer languages and other notations formally defined by a Formal grammar, grammar. The parsing methods most commonly used for parsing programming languages, LR parser, LR parsing and its variations, are shift-reduce methods. The simple precedence parser, precedence parsers used before the invention of LR parsing are also shift-reduce methods. All shift-reduce parsers have similar outward effects, in the incremental order in which they build a parse tree or call specific output actions. Overview A shift-reduce parser scans and parses the input text in one forward pass over the text, without backing up. The parser builds up the parse tree incrementally, bottom up, and left to right, without guessing or backtracking. At every point in this pass, the parser has accumulated a list of subtrees or phrases of the input text that have been already parsed. Those subtrees are not yet joined to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Formal Grammar
A formal grammar is a set of Terminal and nonterminal symbols, symbols and the Production (computer science), production rules for rewriting some of them into every possible string of a formal language over an Alphabet (formal languages), alphabet. A grammar does not describe the semantics, meaning of the strings — only their form. In applied mathematics, formal language theory is the discipline that studies formal grammars and languages. Its applications are found in theoretical computer science, theoretical linguistics, Formal semantics (logic), formal semantics, mathematical logic, and other areas. A formal grammar is a Set_(mathematics), set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given string belongs to the language or is grammatical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]