Koszul Duality
   HOME
*





Koszul Duality
In mathematics, Koszul duality, named after the French mathematician Jean-Louis Koszul, is any of various kinds of dualities found in representation theory of Lie algebras, abstract algebras (semisimple algebra) and topology (e.g., equivariant cohomology). The prototype example, due to Joseph Bernstein, Israel Gelfand, and Sergei Gelfand, is the rough duality between the derived category of a symmetric algebra and that of an exterior algebra. The importance of the notion rests on the suspicion that Koszul duality seems quite ubiquitous in nature. Koszul duality for modules over Koszul algebras The simplest, and in a sense prototypical case of Koszul duality arises as follows: for a 1-dimensional vector space ''V'' over a field ''k'', with dual vector space V^*, the exterior algebra of ''V'' has two non-trivial components, namely :\bigwedge^1 V=V, \quad \bigwedge^0 V = k. This exterior algebra and the symmetric algebra of V^*, \operatorname(V^*), serve to build a two-step chain comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-isomorphism
In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism ''A'' → ''B'' of chain complexes (respectively, cochain complexes) such that the induced morphisms :H_n(A_\bullet) \to H_n(B_\bullet)\ (\text H^n(A^\bullet) \to H^n(B^\bullet)) of homology groups (respectively, of cohomology groups) are isomorphisms for all ''n''. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. See also * Derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ... References *Gelfand, Sergei I., Manin, Yuri I. ''Methods of Homological Alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler Differential
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available. Definition Let and be commutative rings and be a ring homomorphism. An important example is for a field and a unital algebra over (such as the coordinate ring of an affine variety). Kähler differentials formalize the observation that the derivatives of polynomials are again polynomial. In this sense, differentiation is a notion which can be expressed in purely algebraic terms. This observation can be turned into a definition of the module :\Omega_ of differentials in different, but equivalent ways. Definition using derivations An -linear ''derivation'' on is an -modu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dg-algebra
In mathematics, in particular abstract algebra and topology, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. __TOC__ Definition A differential graded algebra (or DG-algebra for short) ''A'' is a graded algebra equipped with a map d\colon A \to A which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the monoidal category of chain complexes. A DG morphism between DG-algebras is a graded algebra homomorphism which respects the differential ''d''. A differential graded augmented algebra (also called a DGA-algebra, an augmented DG-algebra or simply a DGA) is a DG-algebra equipped with a DG morphism to the ground ring (the terminology is due to Henri Cartan). ''Warning:'' some sources use the term ''DGA'' for a DG-alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




D-modules
In mathematics, a ''D''-module is a module over a ring ''D'' of differential operators. The major interest of such ''D''-modules is as an approach to the theory of linear partial differential equations. Since around 1970, ''D''-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial. Early major results were the Kashiwara constructibility theorem and Kashiwara index theorem of Masaki Kashiwara. The methods of ''D''-module theory have always been drawn from sheaf theory and other techniques with inspiration from the work of Alexander Grothendieck in algebraic geometry. The approach is global in character, and differs from the functional analysis techniques traditionally used to study differential operators. The strongest results are obtained for over-determined systems (holonomic systems), and on the characteristic variety cut out by the sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graded Module
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading. A graded module is defined similarly (see below for the precise definition). It generalizes graded vector spaces. A graded module that is also a graded ring is called a graded algebra. A graded ring could also be viewed as a graded \Z-algebra. The associativity is not important (in fact not used at all) in the definition of a graded ring; hence, the notion applies to non-associative algebras as well; e.g., one can consider a graded Lie algebra. First properties Generally, the index set of a graded ring is assumed to be the set of nonnegative integers, unless otherwise explicitly specified. This is the case in this article. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ext Functor
In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another. In the special case of abelian groups, Ext was introduced by Reinhold Baer (1934). It was named by Samuel Eilenberg and Saunders MacLane (1942), and applied to topology (the universal coefficient theorem for cohomology). For modules over any ring, Ext was defined by Henri Cartan and Eilenberg in their 1956 book ''Homological Algebra''. Definition Let ''R'' be a ring and let ''R''-Mod be the category of modules over ''R''. (One can take this to mean either left ''R''-modules or right ''R''-modules.) For a fixed ''R''-module ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Opposite Ring
In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring is the ring whose multiplication ∗ is defined by for all in ''R''. The opposite ring can be used to define multimodules, a generalization of bimodules. They also help clarify the relationship between left and right modules (see '). Monoids, groups, rings, and algebras can all be viewed as categories with a single object. The construction of the opposite category generalizes the opposite group, opposite ring, etc. Relation to automorphisms and antiautomorphisms In this section the symbol for multiplication in the opposite ring is changed from asterisk to diamond, to avoid confusion with some unary operation. A ring R having isomorphic opposite ring is called a ''self-opposite'' ring, which name indicates that R^\text is essentially the same as R. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see below). The tensor algebra is important because many other algebras arise as quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by giving an antipode to create a Hopf algebra structure. ''Note'': In this article, all a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Algebra
In mathematics, a quadratic algebra is a filtered algebra generated by degree one elements, with defining relations of degree 2. It was pointed out by Yuri Manin that such algebras play an important role in the theory of quantum groups. The most important class of graded quadratic algebras is Koszul algebras. Definition A graded quadratic algebra ''A'' is determined by a vector space of generators ''V'' = ''A''1 and a subspace of homogeneous quadratic relations ''S'' ⊂ ''V'' ⊗ ''V'' . Thus : A=T(V)/\langle S\rangle and inherits its grading from the tensor algebra ''T''(''V''). If the subspace of relations is instead allowed to also contain inhomogeneous degree 2 elements, i.e. ''S'' ⊂ ''k'' ⊕ ''V'' ⊕ (''V'' ⊗ ''V''), this construction results in a filtered quadratic algebra. A graded quadratic algebra ''A'' as above admits a quadratic dual: the quadratic algebra generated by ''V''* and with quadratic relations forming the orthogonal complement of ''S'' in '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Koszul Algebra
In abstract algebra, a Koszul algebra R is a graded k-algebra over which the ground field k has a linear minimal graded free resolution, ''i.e.'', there exists an exact sequence: :\cdots \rightarrow R(-i)^ \rightarrow \cdots \rightarrow R(-2)^ \rightarrow R(-1)^ \rightarrow R \rightarrow k \rightarrow 0. Here, R(-j) is the graded algebra R with grading shifted up by j, ''i.e.'' R(-j)_i = R_. The exponents b_i refer to the b_i-fold direct sum. Choosing bases for the free modules in the resolution, the chain maps are given by matrices, and the definition requires the matrix entries to be zero or linear forms. An example of a Koszul algebra is a polynomial ring over a field, for which the Koszul complex is the minimal graded free resolution of the ground field. There are Koszul algebras whose ground fields have infinite minimal graded free resolutions, ''e.g'', R = k ,y(xy) . The concept is named after the French mathematician Jean-Louis Koszul. See also *Koszul duality *Comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]