Klein Transformation
   HOME
*





Klein Transformation
In quantum field theory, the Klein transformation is a redefinition of the fields to amend the spin-statistics theorem. Bose–Einstein Suppose φ and χ are fields such that, if ''x'' and ''y'' are spacelike-separated points and ''i'' and ''j'' represent the spinor/tensor indices, : varphi_i(x),\varphi_j(y) chi_i(x),\chi_j(y)\=0. Also suppose χ is invariant under the Z2 parity (nothing to do with spatial reflections!) mapping χ to −χ but leaving φ invariant. Obviously, free field theories always satisfy this property. Then, the Z2 parity of the number of χ particles is well defined and is conserved in time. Let's denote this parity by the operator Kχ which maps χ-even states to itself and χ-odd states into their negative. Then, Kχ is involutive, Hermitian and unitary. Needless to say, the fields φ and χ above don't have the proper statistics relations for either a boson or a fermion. i.e. they are bosonic with respect to themselves but fermionic with respe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory in quantum mechanics. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its devel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spacelike
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur. Until the 20th century, it was assumed that the three-dimensional geometry of the universe (its spatial expression in terms of coordinates, distances, and directions) was independent of one-dimensional time. The physicist Albert Einstein helped develop the idea of spacetime as part of his theory of relativity. Prior to his pioneering work, scientists had two separate theories to explain physical phenomena: Isaac Newton's laws of physics described the motion of massive objects, while James Clerk Maxwell's electromagnetic models explained the properties of light. However, in 1905, Einstein based a work on special relativity on two postulates: * The laws of physics are invarian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involution (mathematics)
In mathematics, an involution, involutory function, or self-inverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x \mapsto -x), reciprocation (x \mapsto 1/x), and complex conjugation (z \mapsto \bar z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions ''f'' and ''g'' is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: :a_0 = a_1 = 1 and a_n = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian
{{Short description, none Numerous things are named after the French mathematician Charles Hermite (1822–1901): Hermite * Cubic Hermite spline, a type of third-degree spline * Gauss–Hermite quadrature, an extension of Gaussian quadrature method * Hermite class * Hermite differential equation * Hermite distribution, a parametrized family of discrete probability distributions * Hermite–Lindemann theorem, theorem about transcendental numbers * Hermite constant, a constant related to the geometry of certain lattices * Hermite-Gaussian modes * The Hermite–Hadamard inequality on convex functions and their integrals * Hermite interpolation, a method of interpolating data points by a polynomial * Hermite–Kronecker–Brioschi characterization * The Hermite–Minkowski theorem, stating that only finitely many number fields have small discriminants * Hermite normal form, a form of row-reduced matrices * Hermite numbers, integers related to the Hermite polynomials * He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unitary Operator
In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating ''on'' a Hilbert space, but the same notion serves to define the concept of isomorphism ''between'' Hilbert spaces. A unitary element is a generalization of a unitary operator. In a unital algebra, an element of the algebra is called a unitary element if , where is the identity element. Definition Definition 1. A ''unitary operator'' is a bounded linear operator on a Hilbert space that satisfies , where is the adjoint of , and is the identity operator. The weaker condition defines an '' isometry''. The other condition, , defines a ''coisometry''. Thus a unitary operator is a bounded linear operator which is both an isometry and a coisometry, or, equivalently, a surjective isometry. An equivalent definition is the following: Definition 2. A ''unitary operator'' is a bounded linear operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parastatistics
In quantum mechanics and statistical mechanics, parastatistics is one of several alternatives to the better known particle statistics models (Bose–Einstein statistics, Fermi–Dirac statistics and Maxwell–Boltzmann statistics). Other alternatives include anyonic statistics and braid statistics, both of these involving lower spacetime dimensions. Herbert S. Green is credited with the creation of parastatistics in 1953. Formalism Consider the operator algebra of a system of ''N'' identical particles. This is a *-algebra. There is an ''SN'' group (symmetric group of order ''N'') acting upon the operator algebra with the intended interpretation of permuting the ''N'' particles. Quantum mechanics requires focus on observables having a physical meaning, and the observables would have to be invariant under all possible permutations of the ''N'' particles. For example, in the case ''N'' = 2, ''R''2 − ''R''1 cannot be an observable because it chan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bose–Einstein Statistics
In quantum statistics, Bose–Einstein statistics (B–E statistics) describes one of two possible ways in which a collection of non-interacting, indistinguishable particles may occupy a set of available discrete energy states at thermodynamic equilibrium. The aggregation of particles in the same state, which is a characteristic of particles obeying Bose–Einstein statistics, accounts for the cohesive streaming of laser light and the frictionless creeping of superfluid helium. The theory of this behaviour was developed (1924–25) by Satyendra Nath Bose, who recognized that a collection of identical and indistinguishable particles can be distributed in this way. The idea was later adopted and extended by Albert Einstein in collaboration with Bose. The Bose–Einstein statistics applies only to the particles not limited to single occupancy of the same state – that is, particles that do not obey the Pauli exclusion principle restrictions. Such particles have integer values of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermi–Dirac Statistics
Fermi–Dirac statistics (F–D statistics) is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the distribution independently in 1926 (although Fermi derived it before Dirac). Fermi–Dirac statistics is a part of the field of statistical mechanics and uses the principles of quantum mechanics. F–D statistics applies to identical and indistinguishable particles with half-integer spin (1/2, 3/2, etc.), called fermions, in thermodynamic equilibrium. For the case of negligible interaction between particles, the system can be described in terms of single-particle energy states. A result is the F–D distribution of particles over these states where no two particles can occupy the same state, which has a considerable effect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jordan–Schwinger Transformation
In theoretical physics, the Jordan map, often also called the Jordan–Schwinger map is a map from matrices to bilinear expressions of quantum oscillators which expedites computation of representations of Lie algebras occurring in physics. It was introduced by Pascual Jordan in 1935 and was utilized by Julian Schwinger in 1952 to re-work out the theory of quantum angular momentum efficiently, given that map’s ease of organizing the (symmetric) representations of su(2) in Fock space. The map utilizes several creation and annihilation operators a^\dagger_i and a^_i of routine use in quantum field theories and many-body problems, each pair representing a quantum harmonic oscillator. The commutation relations of creation and annihilation operators in a multiple-boson system are, : ^_i, a^\dagger_j\equiv a^_i a^\dagger_j - a^\dagger_ja^_i = \delta_, : ^\dagger_i, a^\dagger_j= ^_i, a^_j= 0, where \ , \ \ /math> is the commutator and \delta_ is the Kronecker delta. These oper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jordan–Wigner Transformation
The Jordan–Wigner transformation is a transformation that maps spin operators onto fermionic creation and annihilation operators. It was proposed by Pascual Jordan and Eugene Wigner for one-dimensional lattice models, but now two-dimensional analogues of the transformation have also been created. The Jordan–Wigner transformation is often used to exactly solve 1D spin-chains such as the Ising and XY models by transforming the spin operators to fermionic operators and then diagonalizing in the fermionic basis. This transformation actually shows that the distinction between spin-1/2 particles and fermions is nonexistent. It can be applied to systems with an arbitrary dimension. Analogy between spins and fermions In what follows we will show how to map a 1D spin chain of spin-1/2 particles to fermions. Take spin-1/2 Pauli operators acting on a site j of a 1D chain, \sigma_^, \sigma_^, \sigma_^. Taking the anticommutator of \sigma_^ and \sigma_^, we find \ = I, as would ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bogoliubov–Valatin Transformation
In theoretical physics, the Bogoliubov transformation, also known as the Bogoliubov–Valatin transformation, was independently developed in 1958 by Nikolay Bogolyubov and John George Valatin for finding solutions of BCS theory in a homogeneous system. The Bogoliubov transformation is an isomorphism of either the canonical commutation relation algebra or canonical anticommutation relation algebra. This induces an autoequivalence on the respective representations. The Bogoliubov transformation is often used to diagonalize Hamiltonians, which yields the stationary solutions of the corresponding Schrödinger equation. The Bogoliubov transformation is also important for understanding the Unruh effect, Hawking radiation, pairing effects in nuclear physics, and many other topics. The Bogoliubov transformation is often used to diagonalize Hamiltonians, ''with'' a corresponding transformation of the state function. Operator eigenvalues calculated with the diagonalized Hamiltonian on the t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]