Kirch Space
   HOME
*





Kirch Space
In general topology and number theory, branches of mathematics, one can define various topologies on the set \mathbb of integers or the set \mathbb_ of positive integers by taking as a base a suitable collection of arithmetic progressions, sequences of the form \ or \. The open sets will then be unions of arithmetic progressions in the collection. Three examples are the Furstenberg topology on \mathbb, and the Golomb topology and the Kirch topology on \mathbb_. Precise definitions are given below. Hillel Furstenberg introduced the first topology in order to provide a "topological" proof of the infinitude of the set of primes. The second topology was studied by Solomon Golomb and provides an example of a countably infinite Hausdorff space that is connected. The third topology, introduced by A.M. Kirch, is an example of a countably infinite Hausdorff space that is both connected and locally connected. These topologies also have interesting separation and homogeneity properties. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Topology
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE