Kinematically Complete Experiment
   HOME





Kinematically Complete Experiment
In accelerator physics, a kinematically complete experiment is an experiment in which all kinematic parameters of all collision products are determined. If the final state of the collision involves n particles 3n momentum components (3 Cartesian coordinates for each particle) need to be determined. However, these components are linked to each other by momentum conservation in each direction (3 equations) and energy conservation (1 equation) so that only 3n-4 components are linearly independent. Therefore, the measurement of 3n-4 momentum components constitutes a kinematically complete experiment. If the final state involves only two particles (e.g. in the Rutherford experiment on elastic scattering) then only one particle needs to be detected. However, for processes leading to three collision products, like e.g. single ionization of the target atom, then two particles need to be momentum-analyzed (for one of them it is sufficient to measure two momentum components) and measur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accelerator Physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: * Microwave engineering (for acceleration/deflection structures in the radio frequency range). *Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction). * Computer technology with an emphasis on digital signal processing; e.g., for automated manipulation of the particle beam. * Plasma physics, for the description of intense beams. The experiments conducted with particle accelerators are not regarded as part of accelerator physics, but belong (according to the objectives of the experiments) to, e.g., particle physics, nuclear physics, condensed matter physics or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rutherford Experiment
The Rutherford scattering experiments were a landmark series of experiments by which scientists learned that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed between 1906 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester. The physical phenomenon was explained by Rutherford in a classic 1911 paper that eventually led to the widespread use of scattering in particle physics to study subatomic matter. Rutherford scattering or Coulomb scattering is the elastic scattering of charged particles by the Coulomb interaction. The paper also initiated the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering is now exploited by the materials science communi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Few-body Systems
In physics, a few-body system consists of a small number of well-defined structures or point particles. It is usually in-between the two-body and the many-body systems with large ''N''. Quantum mechanics In quantum mechanics, examples of few-body systems include light nuclear systems (that is, few-nucleon bound and scattering states), small molecules, light atoms (such as helium in an external electric field), atomic collisions, and quantum dots. A fundamental difficulty in describing few-body systems is that the Schrödinger equation and the classical equations of motion are not analytically solvable for more than two mutually interacting particles even when the underlying forces are precisely known. This is known as the few-body problem. For some three-body systems an exact solution can be obtained iteratively through the Faddeev equations. It can be shown that under certain conditions Faddeev equations should lead to the Efimov effect. Most three-body systems are amenable to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Accelerator Physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: * Microwave engineering (for acceleration/deflection structures in the radio frequency range). *Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction). * Computer technology with an emphasis on digital signal processing; e.g., for automated manipulation of the particle beam. * Plasma physics, for the description of intense beams. The experiments conducted with particle accelerators are not regarded as part of accelerator physics, but belong (according to the objectives of the experiments) to, e.g., particle physics, nuclear physics, condensed matter physics or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]