Kim Jihn-eui
   HOME
*





Kim Jihn-eui
Kim Jihn-eui (born July 30, 1946) is a South Korean theoretical physicist. His research interests concentrate on particle physics and cosmology and has many contributions to the field, most notably the suggestion of the invisible axion. Birth and education Kim was born in Gurye, South Jeolla Province in 1946. He graduated from Kyunggi High School and earned his bachelor's degree in chemical engineering from Seoul National University in 1971. He earned his Ph.D in particle physics from University of Rochester in 1975. He became a research associate at Brown University from 1975 to 1977 and worked as a research investigator at University of Pennsylvania to 1980. Then he was appointed to assistant professor of Seoul National University in 1980 and had been there until retirement in 2011. Afterwards he took a position at Gwangju Institute of Science and Technology in Gwangju. Currently he is distinguished professor and eminent scholar at Kyung Hee University. He was also a professor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gurye
Gurye (''Gurye-gun'') is a county in the province of Jeollanam-do, South Korea. Gurye is a small, picturesque farming town situated between Jirisan and the Seomjin River. In the northeastern part of unwavering efforts at the Mt. Jiri. Gurye is the sole designated special tourism and leisure zone in all of Jeollanam-do. The total size of Gurye County is 443.02 square km, with a modest population of approximately 30,000. Gurye County is a hiking destination during the spring and autumn seasons. The county hosts a number of yearly festivals such as Sansuyu Flower Festival, the Royal Azalea Festival and the Piagol Valley Maple Festival. Gurye is also home to Korea's first national state park, which houses some of Korea's most important temples such as Hwaeomsa, Cheoneunsa, and Yeongoksa. Location Gurye is located in the southwest portion of Korea, and is easily accessible from Seoul, Busan, Gwangju, as well as other major cities. History During the Samhan period, Gurye was part of G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kyung Hee University
Kyung Hee University (abbreviated to KHU) (Hangul: 경희대학교; Hanja: 慶熙大學校) is a private research university in South Korea with campuses in Seoul and Suwon. Founded in 1949, it is widely regarded as one of the best universities in South Korea. Kyung Hee University is part of the Kyung Hee University System, which offers comprehensive education from kindergarten through graduate school. As of 2020, about 33,000 students were enrolled in Kyung Hee University. The university consists of 24 undergraduate colleges, 1 general graduate school, 13 specialty graduate schools and 49 auxiliary research institutions. The university offers a study abroad program in partnership with 434 sister universities in 69 countries. Kyung Hee University is known for its College of Korean Medicine, which is considered a leading school in traditional Korean medicine and other traditional Asian medical practices. History Kyung Hee University originated in 1949 as Sin Heung Junior Colleg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gravitino
In supergravity theories combining general relativity and supersymmetry, the gravitino () is the gauge fermion supersymmetric partner of the hypothesized graviton. It has been suggested as a candidate for dark matter. If it exists, it is a fermion of spin and therefore obeys the Rarita–Schwinger equation. The gravitino field is conventionally written as ''ψμα'' with a four-vector index and a spinor index. For one would get negative norm modes, as with every massless particle of spin 1 or higher. These modes are unphysical, and for consistency there must be a gauge symmetry which cancels these modes: , where ''εα''(''x'') is a spinor function of spacetime. This gauge symmetry is a local supersymmetry transformation, and the resulting theory is supergravity. Thus the gravitino is the fermion mediating supergravity interactions, just as the photon is mediating electromagnetism, and the graviton is presumably mediating gravitation. Whenever supersymmetry is broken in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. Gravitons Like any field theory of gravity, a supergravity theory contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries. History Gauge supersymmetry The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electroweak Interaction
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015  K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the unive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dark Matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observationsincluding gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seenimply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution. The primary evidence for dark matter comes from calculations showing that many galaxies would behave quite differently if they did not contain a large amount of unseen matter. Some galaxies would not have formed at all and others would not move as they currently do. Other lines of evidence include observa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Axion
An axion () is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter. History Strong CP problem As shown by Gerard 't Hooft, strong interactions of the standard model, QCD, possess a non-trivial vacuum structure that in principle permits violation of the combined symmetries of charge conjugation and parity, collectively known as CP. Together with effects generated by weak interactions, the effective periodic strong CP-violating term, , appears as a Standard Model input – its value is not predicted by the theory, but must be measured. However, large CP-violating interactions originating from QCD would induce a large electric dipole moment (EDM) for the neutron. Experimental constraints on the currently unobserved EDM implies CP violation from QCD must be e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axino
The axino is a hypothetical elementary particle predicted by some theories of particle physics. Peccei–Quinn theory attempts to explain the observed phenomenon known as the strong CP problem by introducing a hypothetical real scalar particle called the axion. Adding supersymmetry to the model predicts the existence of a fermionic superpartner for the axion, the axino, and a bosonic superpartner, the ''saxion''. They are all bundled up in a chiral superfield. The axino has been predicted to be the lightest supersymmetric particle in such a model. In part due to this property, it is considered a candidate for the composition of dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a .... The supermultiplet containing an axion and axino has been suggested as the origin of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated huge successes in providing experimental predictions, it leaves some physics beyond the standard m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong CP Problem
The strong CP problem is a puzzling question in particle physics: Why does quantum chromodynamics (QCD) seem to preserve CP-symmetry? In particle physics, CP stands for the combination of charge conjugation symmetry (C) and parity symmetry (P). According to the current mathematical formulation of quantum chromodynamics, a violation of CP-symmetry in strong interactions could occur. However, no violation of the CP-symmetry has ever been seen in any experiment involving only the strong interaction. As there is no known reason in QCD for it to necessarily be conserved, this is a "fine tuning" problem known as the strong CP problem. The strong CP problem is sometimes regarded as an unsolved problem in physics, and has been referred to as "the most underrated puzzle in all of physics." There are several proposed solutions to solve the strong CP problem. The most well-known is Peccei–Quinn theory, involving new pseudoscalar particles called axions. Theory CP-symmetry states th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Bonn
The Rhenish Friedrich Wilhelm University of Bonn (german: Rheinische Friedrich-Wilhelms-Universität Bonn) is a public research university located in Bonn, North Rhine-Westphalia, Germany. It was founded in its present form as the ( en, Rhine University) on 18 October 1818 by Frederick William III, as the linear successor of the ( en, Academy of the Prince-elector of Cologne) which was founded in 1777. The University of Bonn offers many undergraduate and graduate programs in a range of subjects and has 544 professors. The University of Bonn is a member of the U15 (German universities), German U15 association of major research-intensive universities in Germany and has the title of "University of Excellence" under the German Universities Excellence Initiative; it is consistently ranked amongst the best German universities in the world rankings and is one of the most research intensive universities in Germany. Bonn has 6 Clusters of Excellence, the most of any German university; t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harvard University
Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher learning in the United States and one of the most prestigious and highly ranked universities in the world. The university is composed of ten academic faculties plus Harvard Radcliffe Institute. The Faculty of Arts and Sciences offers study in a wide range of undergraduate and graduate academic disciplines, and other faculties offer only graduate degrees, including professional degrees. Harvard has three main campuses: the Cambridge campus centered on Harvard Yard; an adjoining campus immediately across Charles River in the Allston neighborhood of Boston; and the medical campus in Boston's Longwood Medical Area. Harvard's endowment is valued at $50.9 billion, making it the wealthiest academic institution in the world. Endowment inco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]