Kenneth Kunen
   HOME
*





Kenneth Kunen
Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic topology and measure theory. He also worked on non-associative algebraic systems, such as loops, and used computer software, such as the Otter theorem prover, to derive theorems in these areas. Personal life Kunen was born in New York City in 1943 and died in 2020. He lived in Madison, Wisconsin, with his wife Anne, with whom he had two sons, Isaac and Adam. Education Kunen completed his undergraduate degree at the California Institute of Technology and received his Ph.D. in 1968 from Stanford University, where he was supervised by Dana Scott. Career and research Kunen showed that if there exists a nontrivial elementary embedding ''j'' : ''L'' → ''L'' of the constructible universe, then 0# exists. He proved the consistency o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hearst Mining Building
Hearst may refer to: Places * Hearst, former name of Hacienda, California, United States * Hearst, Ontario, town in Northern Ontario, Canada * Hearst, California, an unincorporated community in Mendocino County, United States * Hearst Island, an island in Antarctica * Hearst Castle, a mansion built by William Randolph Hearst in San Simeon, California, United States * Hearst Block, a provincial government building in Toronto, Ontario, Canada People * Hearst (surname) * William Randolph Hearst (1863–1951), newspaper magnate * Hunter Hearst Helmsley (b. 1969), WWE professional wrestler Arts, entertainment, and media * Hearst College, a fictional College in the CW series ''Veronica Mars'' * Hearst Communications, a privately held media conglomerate * Hearst Television, Hearst Communications' broadcast television division (formerly Hearst-Argyle Television) Other uses * Université de Hearst, a French-language university federated with Laurentian University, based in Hears ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Embedding
In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often needs a stronger condition. In this case ''N'' is called an elementary substructure of ''M'' if every first-order ''σ''-formula ''φ''(''a''1, …, ''a''''n'') with parameters ''a''1, …, ''a''''n'' from ''N'' is true in ''N'' if and only if it is true in ''M''. If ''N'' is an elementary substructure of ''M'', then ''M'' is called an elementary extension of ''N''. An embedding ''h'': ''N'' → ''M'' is called an elementary embedding of ''N'' into ''M'' if ''h''(''N'') is an elementary substructure of ''M''. A substructure ''N'' of ''M'' is elementary if and only if it passes the Tarski–Vaught test: every first-order formula ''φ''(''x'', ''b''1, …, ''b''''n'') with para ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singular Cardinal
Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular homology * SINGULAR, an open source Computer Algebra System (CAS) * Singular or sounder, a group of boar, see List of animal names * Singular matrix, a matrix that is not invertible * Singular measure, a measure or probability distribution whose support has zero Lebesgue (or other) measure * Singular cardinal, an infinite cardinal number that is not a regular cardinal * The property of a ''singularity'' or ''singular point'' in various meanings; see Singularity (other) Singularity or singular point may refer to: Science, technology, and mathematics Mathematics * Mathematical singularity, a point at which a given mathematical object is not defined or not "well-behaved", for example infinite or not differentiab ... * Singular (band), a Thai jazz pop duo *'' Singular: Act I'', a 2018 studio album by Sabrina Carpenter *'' Singu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Martin's Axiom
In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, \mathfrak c, behave roughly like \aleph_0. The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments. Statement For any cardinal 𝛋, we define a statement, denoted by MA(𝛋): For any partial order ''P'' satisfying the countable chain condition (hereafter ccc) and any family ''D'' of dense sets in ''P'' such that '', D, '' ≤ 𝛋, there is a filter ''F'' on ''P'' such that ''F'' ∩ ''d'' is non-empty for every ''d'' in ''D''. \operatorname(\aleph_0) is simply true — this is known ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forcing (mathematics)
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reinhardt Cardinal
In set theory, a branch of mathematics, a Reinhardt cardinal is a kind of large cardinal. Reinhardt cardinals are considered under ZF ( Zermelo–Fraenkel set theory without the Axiom of Choice), because they are inconsistent with ZFC (ZF with the Axiom of Choice). They were suggested by American mathematician William Nelson Reinhardt (1939–1998). Definition A Reinhardt cardinal is the critical point of a non-trivial elementary embedding j:V\to V of '' V'' into itself. This definition refers explicitly to the proper class j. In standard ZF, classes are of the form \ for some set a and formula \phi. But it was shown in that no such class is an elementary embedding j:V\to V. So Reinhardt cardinals are inconsistent with this notion of class. There are other formulations of Reinhardt cardinals which are not known to be inconsistent. One is to add a new function symbol j to the language of ZF, together with axioms stating that j is an elementary embedding of V, and Separation a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kunen's Inconsistency Theorem
In set theory, a branch of mathematics, Kunen's inconsistency theorem, proved by , shows that several plausible large cardinal axioms are inconsistent with the axiom of choice. Some consequences of Kunen's theorem (or its proof) are: *There is no non-trivial elementary embedding of the universe ''V'' into itself. In other words, there is no Reinhardt cardinal. *If ''j'' is an elementary embedding of the universe ''V'' into an inner model ''M'', and λ is the smallest fixed point of ''j'' above the critical point κ of ''j'', then ''M'' does not contain the set ''j'' "λ (the image of ''j'' restricted to λ). *There is no ω-huge cardinal. *There is no non-trivial elementary embedding of ''V''λ+2 into itself. It is not known if Kunen's theorem still holds in ZF (ZFC without the axiom of choice), though showed that there is no definable elementary embedding from ''V'' into ''V''. That is there is no formula ''J'' in the language of set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inner Model
In set theory, a branch of mathematical logic, an inner model for a theory ''T'' is a substructure of a model ''M'' of a set theory that is both a model for ''T'' and contains all the ordinals of ''M''. Definition Let L = \langle \in \rangle be the language of set theory. Let ''S'' be a particular set theory, for example the ZFC axioms and let ''T'' (possibly the same as ''S'') also be a theory in L. If ''M'' is a model for ''S'', and ''N'' is an L-structure such that #''N'' is a substructure of ''M'', i.e. the interpretation \in_N of \in in ''N'' is \cap N^2 #''N'' is a model for ''T'' #the domain of ''N'' is a transitive class of ''M'' #''N'' contains all ordinals of ''M'' then we say that ''N'' is an inner model of ''T'' (in ''M''). Usually ''T'' will equal (or subsume) ''S'', so that ''N'' is a model for ''S'' 'inside' the model ''M'' of ''S''. If only conditions 1 and 2 hold, ''N'' is called a standard model of ''T'' (in ''M''), a standard submodel of ''T'' (if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly Compact Cardinal
In set theory, a branch of mathematics, a strongly compact cardinal is a certain kind of large cardinal. A cardinal κ is strongly compact if and only if every κ-complete filter can be extended to a κ-complete ultrafilter. Strongly compact cardinals were originally defined in terms of infinitary logic, where logical operators are allowed to take infinitely many operands. The logic on a regular cardinal κ is defined by requiring the number of operands for each operator to be less than κ; then κ is strongly compact if its logic satisfies an analog of the compactness property of finitary logic. Specifically, a statement which follows from some other collection of statements should also follow from some subcollection having cardinality less than κ. The property of strong compactness may be weakened by only requiring this compactness property to hold when the original collection of statements has cardinality below a certain cardinal λ; we may then refer to λ-compactness. A card ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivision of all of its subsets into large and small sets such that itself is large, and all singletons are small, complements of small sets are large and vice versa. The intersection of fewer than large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of ''κ''. (Here the term ''κ-additive'' means that, for any sequence ''A''''α'', α<λ of cardinality '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ultrapower
The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factors need to have the same signature. The ultrapower is the special case of this construction in which all factors are equal. For example, ultrapowers can be used to construct new fields from given ones. The hyperreal numbers, an ultrapower of the real numbers, are a special case of this. Some striking applications of ultraproducts include very elegant proofs of the compactness theorem and the completeness theorem, Keisler's ultrapower theorem, which gives an algebraic characterization of the semantic notion of elementary equivalence, and the Robinson–Zakon presentation of the use of superstructures and their monomorphisms to construct nonstandard models of analysis, leading to the growth of the area of nonstandard analysis, which was pion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]