Karl Kraus (physicist)
   HOME
*





Karl Kraus (physicist)
Karl Kraus (21 March 1938 – 9 June 1988) was a German theoretical physicist who made major contributions to the foundations of quantum physics. Life and work Kraus was born in 1938 in Hohenelbe/Giant Mountains, today Vrchlabí. After the war, he grew up in Elsterwerda and attended local schools. He studied physics from 1955 to 1960 at the Humboldt University of Berlin (East) and the Free University of Berlin (West). He graduated in 1962 with a thesis about Lorentz's theory of gravity, carried out under the supervision of Kurt Just. Kraus then joined as an assistant to Günther Ludwig at the University of Marburg, where he qualified in 1966. In 1971, he accepted a professorship at the Institute of Physics of the University of Würzburg, where he established a mathematical physics working group on the topic of the foundations of quantum theory. In 1980 Kraus spent a sabbatical year at UT Austin with John Archibald Wheeler, Arno Böhm, George Sudarshan, William Wootters, and Wojc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vrchlabí
Vrchlabí (; german: Hohenelbe, la, Albipolis) is a town in Trutnov District in the Hradec Králové Region of the Czech Republic. It has about 12,000 inhabitants. It lies at the foot of the Giant Mountains on the river Elbe. The town centre with the castle complex, monastery complex and town park is well preserved and is protected by law as an Cultural monument (Czech Republic)#Monument zones, urban monument zone. Administrative parts Vrchlabí is made up of town parts of Vrchlabí, Hořejší Vrchlabí and Podhůří. Etymology The name of the town is closely related with the location on the river Elbe, the oldest name is Latin ''Albipolis'' (''Albi'' = Elbe, ''polis'' = city). Both Czech and German name can be translated as ''Upper Elbe Area''. Geography Vrchlabí is located about northwest of Trutnov and north of Hradec Králové. About half of the municipal territory lies in the Giant Mountains, and its northern part lies in the Krkonoše National Park. The seat of the adm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Sudarshan
Ennackal Chandy George Sudarshan (also known as E. C. G. Sudarshan; 16 September 1931 – 13 May 2018) was an Indian American theoretical physicist and a professor at the University of Texas. Sudarshan has been credited with numerous contributions to the field of theoretical physics, including Glauber–Sudarshan P representation, V-A theory, tachyons, quantum Zeno effect, open quantum system and Lindblad equation, spin–statistics theorem, non-invariance groups, positive maps of density matrices, and quantum computation. Early life Ennackal Chandy George Sudarshan was born in Pallom, Kottayam, Travancore, British India. He was raised in a Syrian Christian family, but later left the religion and converted to Hinduism following his marriage. He married Lalita Rau on December 20, 1954 and they have three sons, Alexander, Arvind (deceased) and Ashok. George and Lalita were divorced in 1990 and he married Bhamathi Gopalakrishnan in Austin, Texas. He studied at CMS College ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to establi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Positive
In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one which satisfies a stronger, more robust condition. Definition Let A and B be C*-algebras. A linear map \phi: A\to B is called positive map if \phi maps positive elements to positive elements: a\geq 0 \implies \phi(a)\geq 0. Any linear map \phi:A\to B induces another map :\textrm \otimes \phi : \mathbb^ \otimes A \to \mathbb^ \otimes B in a natural way. If \mathbb^\otimes A is identified with the C*-algebra A^ of k\times k-matrices with entries in A, then \textrm\otimes\phi acts as : \begin a_ & \cdots & a_ \\ \vdots & \ddots & \vdots \\ a_ & \cdots & a_ \end \mapsto \begin \phi(a_) & \cdots & \phi(a_) \\ \vdots & \ddots & \vdots \\ \phi(a_) & \cdots & \phi(a_) \end. We say that \phi is k-positive if \textrm_ \otimes \phi is a positive map, and \phi is called completely positive if \phi is k-positive for all k. Properties * Pos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Information
Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term. It is an interdisciplinary field that involves quantum mechanics, computer science, information theory, philosophy and cryptography among other fields. Its study is also relevant to disciplines such as cognitive science, psychology and neuroscience. Its main focus is in extracting information from matter at the microscopic scale. Observation in science is one of the most important ways of acquiring information and measurement is required in order to quantify the observation, making this crucial to the scientific method. In quantum mechanics, due to the uncertainty principle, non-commuting observables cannot be precisely measured simultaneously, as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Density Operator
In quantum mechanics, a density matrix (or density operator) is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent ''mixed states''. Mixed states arise in quantum mechanics in two different situations: first when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and second when one wants to describe a physical system which is entangled with another, without describing their combined state. Density matrices are thus crucial tools in areas of quantum mechanics that deal with mixed states, such as quantum statistical mechanics, open quantum systems, quantum decoherence, and quantum information. Definition and m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Map (mathematics)
In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but ''transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a " continuous function" in topology, a "linear transformation" in linear algebra, etc. Some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Operation
In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment. In the context of quantum computation, a quantum operation is called a quantum channel. Note that some authors use the term "quantum operation" to refer specifically to completely positive (CP) and non-trace-increasing maps on the space of density matrices, and the term "quantum channel" to refer to the subset of those that are strictly trace-preserving. Quantum operations are formulated in terms of the density operator description of a quantum mechanica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Zeno Effect
The quantum Zeno effect (also known as the Turing paradox) is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting. Sometimes this effect is interpreted as "a system cannot change while you are watching it". One can "freeze" the evolution of the system by measuring it frequently enough in its known initial state. The meaning of the term has since expanded, leading to a more technical definition, in which time evolution can be suppressed not only by measurement: the quantum Zeno effect is the suppression of unitary time evolution in quantum systems provided by a variety of sources: measurement, interactions with the environment, stochastic fields, among other factors. As an outgrowth of study of the quantum Zeno effect, it has become clear that applying a series of sufficiently strong and fast pulses with appropriate symmetry can also ''decouple'' a system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Copenhagen Interpretation
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest of numerous proposed interpretations of quantum mechanics, as features of it date to the development of quantum mechanics during 1925–1927, and it remains one of the most commonly taught. There is no definitive historical statement of what the Copenhagen interpretation is. There are some fundamental agreements and disagreements between the views of Bohr and Heisenberg. For example, Heisenberg emphasized a sharp "cut" between the observer (or the instrument) and the system being observed, while Bohr offered an interpretation that is independent of a subjective observer or measurement or collapse, which relies on an "irreversible" or effectively irreversible process, which could take place within the quantum system. Features common to Copenhagen-type interpretations include the idea that quantum mechanic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurement Problem
In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key set of questions that each interpretation must answer. The wave function in quantum mechanics evolves deterministically according to the Schrödinger equation as a linear superposition of different states. However, actual measurements always find the physical system in a definite state. Any future evolution of the wave function is based on the state the system was discovered to be in when the measurement was made, meaning that the measurement "did something" to the system that is not obviously a consequence of Schrödinger evolution. The measurement problem is describing what that "something" is, how a superposition of many possible values becomes a single measured value. To express matters differently (paraphrasing Steven Weinberg), the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]