Kuratowski And Ryll-Nardzewski Measurable Selection Theorem
   HOME
*





Kuratowski And Ryll-Nardzewski Measurable Selection Theorem
In mathematics, the Kuratowski–Ryll-Nardzewski measurable selection theorem is a result from measure theory that gives a sufficient condition for a set-valued function to have a measurable selection function. It is named after the Polish mathematicians Kazimierz Kuratowski and Czesław Ryll-Nardzewski. Many classical selection results follow from this theorem and it is widely used in mathematical economics and optimal control Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and .... Statement of the theorem Let X be a Polish space, \mathcal (X) the Borel σ-algebra of X , (\Omega, \mathcal) a measurable space and \psi a multifunction on \Omega taking values in the set of nonempty closed subsets of X . Suppose that \psi is \mathcal -weakly measurable, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set-valued Function
A set-valued function (or correspondence) is a mathematical function that maps elements from one set, the domain of the function, to subsets of another set. Set-valued functions are used in a variety of mathematical fields, including optimization, control theory and game theory. Set-valued functions are also known as multivalued functions in some references, but herein and in many others references in mathematical analysis, a multivalued function is a set-valued function that has a further continuity property, namely that the choice of an element in the set f(x) defines a corresponding element in each set f(y) for close to , and thus defines locally an ordinary function. Examples The argmax of a function is in general, multivalued. For example, \operatorname_ \cos(x) = \. Set-valued analysis Set-valued analysis is the study of sets in the spirit of mathematical analysis and general topology. Instead of considering collections of only points, set-valued analysis con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selection Function
A choice function (selector, selection) is a mathematical function ''f'' that is defined on some collection ''X'' of nonempty sets and assigns some element of each set ''S'' in that collection to ''S'' by ''f''(''S''); ''f''(''S'') maps ''S'' to some element of ''S''. In other words, ''f'' is a choice function for ''X'' if and only if it belongs to the direct product of ''X''. An example Let ''X'' = . Then the function that assigns 7 to the set , 9 to , and 2 to is a choice function on ''X''. History and importance Ernst Zermelo (1904) introduced choice functions as well as the axiom of choice (AC) and proved the well-ordering theorem, which states that every set can be well-ordered. AC states that every set of nonempty sets has a choice function. A weaker form of AC, the axiom of countable choice (ACω) states that every countable set of nonempty sets has a choice function. However, in the absence of either AC or ACω, some sets can still be shown to have a choic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kazimierz Kuratowski
Kazimierz Kuratowski (; 2 February 1896 – 18 June 1980) was a Polish mathematician and logician. He was one of the leading representatives of the Warsaw School of Mathematics. Biography and studies Kazimierz Kuratowski was born in Warsaw, (then part of Congress Poland controlled by the Russian Empire), on 2 February 1896, into an assimilated Jewish family. He was a son of Marek Kuratow, a barrister, and Róża Karzewska. He completed a Warsaw secondary school, which was named after general Paweł Chrzanowski. In 1913, he enrolled in an engineering course at the University of Glasgow in Scotland, in part because he did not wish to study in Russian; instruction in Polish was prohibited. He completed only one year of study when the outbreak of World War I precluded any further enrolment. In 1915, Russian forces withdrew from Warsaw and Warsaw University was reopened with Polish as the language of instruction. Kuratowski restarted his university education there the same year, this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Czesław Ryll-Nardzewski
Czesław Ryll-Nardzewski (; 7 October 1926 – 18 September 2015) was a Polish mathematician. Born in Wilno, Second Polish Republic (now Vilnius, Lithuania), he was a student of Hugo Steinhaus. At the age of 26 he became professor at Warsaw University. In 1959, he became a professor at the Wrocław University of Technology. He was the advisor of 18 PhD theses. His main research areas are measure theory, functional analysis, foundations of mathematics and probability theory. Several theorems bear his name: the Ryll-Nardzewski fixed point theorem, “9. Theorem of Ryll-Nardzewski” (p. 171), “(9.6) Theorem (Ryll-Nardzewski)” (p. 174) the Ryll-Nardzewski theorem See Theorem 7.3.1 Cf. (2.10) in model theory, and the Kuratowski and Ryll-Nardzewski measurable selection theorem. See Theorem 6.9.3 on p. 36 and the historical comment on p. 441 He became a member of the Polish Academy of Sciences The Polish Academy of Sciences ( pl, Polska Akademia Nauk, PAN) is a Polish state ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Economics
Mathematical economics is the application of mathematical methods to represent theories and analyze problems in economics. Often, these applied methods are beyond simple geometry, and may include differential and integral calculus, difference and differential equations, matrix algebra, mathematical programming, or other computational methods. Proponents of this approach claim that it allows the formulation of theoretical relationships with rigor, generality, and simplicity. Mathematics allows economists to form meaningful, testable propositions about wide-ranging and complex subjects which could less easily be expressed informally. Further, the language of mathematics allows economists to make specific, positive claims about controversial or contentious subjects that would be impossible without mathematics. Much of economic theory is currently presented in terms of mathematical economic models, a set of stylized and simplified mathematical relationships asserted to clarif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optimal Control
Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory. Optimal control is an extension of the calculus of variations, and is a mathematical optimization method for deriving control policies. The method is largely due to the work of Lev Pontryagin and Richard Bellman in the 1950s, after contributions to calcu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polish Space
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians— Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any separable Banach space, the Cantor space, and the Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; e.g., the open interval (0, 1) is Polish. Between any two uncountable Polish spaces, there is a Borel isomorphism; t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Set
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space ''X'', the collection of all Borel sets on ''X'' forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on ''X'' is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory. In some contexts, Borel sets are defined to be generated by the compact sets of the topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Space
In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the tuple (X, \mathcal A) is called a measurable space. Note that in contrast to a measure space, no measure is needed for a measurable space. Example Look at the set: X = \. One possible \sigma-algebra would be: \mathcal A_1 = \. Then \left(X, \mathcal A_1\right) is a measurable space. Another possible \sigma-algebra would be the power set on X: \mathcal A_2 = \mathcal P(X). With this, a second measurable space on the set X is given by \left(X, \mathcal A_2\right). Common measurable spaces If X is finite or countably infinite, the \sigma-algebra is most often the power set on X, so \mathcal A = \mathcal P(X). This leads to the measurable space (X, \mathcal P(X)). If X is a topological space In mathematics, a topological space is, rou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Choice Function
A choice function (selector, selection) is a mathematical function ''f'' that is defined on some collection ''X'' of nonempty sets and assigns some element of each set ''S'' in that collection to ''S'' by ''f''(''S''); ''f''(''S'') maps ''S'' to some element of ''S''. In other words, ''f'' is a choice function for ''X'' if and only if it belongs to the direct product of ''X''. An example Let ''X'' = . Then the function that assigns 7 to the set , 9 to , and 2 to is a choice function on ''X''. History and importance Ernst Zermelo (1904) introduced choice functions as well as the axiom of choice (AC) and proved the well-ordering theorem, which states that every set can be well-ordered. AC states that every set of nonempty sets has a choice function. A weaker form of AC, the axiom of countable choice (ACω) states that every countable set of nonempty sets has a choice function. However, in the absence of either AC or ACω, some sets can still be shown to have a ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]