HOME
*





Komar Mass
The Komar mass (named after Arthur Komar) of a system is one of several formal concepts of mass that are used in general relativity. The Komar mass can be defined in any stationary spacetime, which is a spacetime in which all the metric components can be written so that they are independent of time. Alternatively, a stationary spacetime can be defined as a spacetime which possesses a timelike Killing vector field. The following discussion is an expanded and simplified version of the motivational treatment in (Wald, 1984, pg 288). Motivation Consider the Schwarzschild metric. Using the Schwarzschild basis, a frame field for the Schwarzschild metric, one can find that the radial acceleration required to hold a test mass stationary at a Schwarzschild coordinate of ''r'' is: :a^\hat = \frac Because the metric is static, there is a well-defined meaning to "holding a particle stationary". Interpreting this acceleration as being due to a "gravitational force", we can then comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arthur Komar
Arthur B. Komar (March 26, 1931 – June 3, 2011) was a theoretical physicist, specializing in general relativity and the search for quantum gravity. Arthur Komar made a significant contribution to physics as an educator, research scientist, and administrator. He had wide interests in numerous other subjects. Education Arthur attended Midwood High School in Brooklyn. He was a capable student and chose to specialize in physics. Research Princeton Arthur's interests in physics ranged over numerous fundamental and applied concepts, including conserved quantities, space and time, and thermodynamics, notably he pursued the problem of observables in general relativity and in quantum theory. As a graduate student, he worked on the problem of invariants in general relativistic spacetimes. In 1956, he gained his Ph.D. in physics at Princeton University with a thesis on the classical electron – a topic suggested by Fritz Rohrlich. His PhD dissertation was supervised by John Archibald ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stress–energy Tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity. Definition The stress–energy tensor involves the use of superscripted variables (''not'' exponents; see tensor index notation and Einstein summation notation). If Cartesian coordinates in SI units are used, then the components of the position four-vector are given by: , , , and , where ''t'' is time in seconds, and ''x'', ''y'', and ''z'' are distances in meters. The stress–energy tensor is defined as th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Chicago Press
The University of Chicago Press is the largest and one of the oldest university presses in the United States. It is operated by the University of Chicago and publishes a wide variety of academic titles, including ''The Chicago Manual of Style'', numerous academic journals, and advanced monographs in the academic fields. One of its quasi-independent projects is the BiblioVault, a digital repository for scholarly books. The Press building is located just south of the Midway Plaisance on the University of Chicago campus. History The University of Chicago Press was founded in 1890, making it one of the oldest continuously operating university presses in the United States. Its first published book was Robert F. Harper's ''Assyrian and Babylonian Letters Belonging to the Kouyunjik Collections of the British Museum''. The book sold five copies during its first two years, but by 1900 the University of Chicago Press had published 127 books and pamphlets and 11 scholarly journals, inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mass In General Relativity
The concept of mass in general relativity (GR) is more subtle to define than the concept of mass in special relativity. In fact, general relativity does not offer a single definition of the term mass, but offers several different definitions that are applicable under different circumstances. Under some circumstances, the mass of a system in general relativity may not even be defined. The reason for this subtlety is that the energy and momentum in the gravitational field cannot be unambiguously localized. (See Chapter 20 of .) So, rigorous definitions of the mass in general relativity are not local, as in classical mechanics or special relativity, but make reference to the asymptotic nature of the spacetime. A well defined notion of the mass exists for asymptotically flat spacetimes and for asymptotically Anti-de Sitter space. However, these definitions must be used with care in other settings. Defining mass in general relativity: concepts and obstacles In special relativity, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Komar Superpotential
In general relativity, the Komar superpotential, corresponding to the invariance of the Hilbert–Einstein Lagrangian \mathcal_\mathrm = R \sqrt \, \mathrm^4x, is the tensor density: : U^(,\xi) =\nabla^\xi^ = (g^ \nabla_\xi^ - g^ \nabla_\xi^) \, , associated with a vector field \xi=\xi^\partial_, and where \nabla_ denotes covariant derivative with respect to the Levi-Civita connection. The Komar two-form: : \mathcal(,\xi) =U^(,\xi) \mathrmx_= \nabla^\xi^\sqrt\,\mathrmx_ \, , where \mathrmx_= \iota_\mathrmx_= \iota_\iota_\mathrm^4x denotes interior product, generalizes to an arbitrary vector field \xi the so-called above Komar superpotential, which was originally derived for timelike Killing vector fields. Komar superpotential is affected by the anomalous factor problem: In fact, when computed, for example, on the Kerr–Newman solution, produces the correct angular momentum, but just one-half of the expected mass. See also *Superpotential *Einstein–Hilbert action *Ko ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Levi-Civita Symbol
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the parity of a permutation, sign of a permutation of the natural numbers , for some positive integer . It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric tensor, antisymmetric property and definition in terms of permutations. The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon or , or less commonly the Latin lower case . Index notation allows one to display permutations in a way compatible with tensor analysis: \varepsilon_ where ''each'' index takes values . There are indexed values of , which can be arranged into an -dimensional array. The key defining property of the symbol is ''total antisymmetry'' in the ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowskian
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of Three-dimensional space, three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two Event (relativity), events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity. Minkowski space is closely associated with Albert Einstein, Einstein's theories of special relativity and general relativity and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time may differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime betwee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stationary Metric
In addition to its common meaning, stationary may have the following specialized scientific meanings: Mathematics * Stationary point * Stationary process * Stationary state Meteorology * A stationary front is a weather front that is not moving Physics * A time-invariant system quantity, such as a constant position or temperature * A steady state In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties ''p' ... physical process, such as a vibration at constant amplitude and frequency or a steady fluid flow * A stationary wave is a standing wave * Stationary spacetime in general relativity Other uses * "Stationary", a song from ''Copacetic'' (Knuckle Puck album) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time Translation Symmetry
Time translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time translation symmetry is closely connected, via the Noether theorem, to conservation of energy. In mathematics, the set of all time translations on a given system form a Lie group. There are many symmetries in nature besides time translation, such as spatial translation or rotational symmetries. These symmetries can be broken and explain diverse phenomena such as crystals, superconductivity, and the Higgs mechanism. However, it was thought until very recently that time translation symmetry could not be broken. Time crystals, a state of matter first observed in 201 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Killing Vector
In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object. Definition Specifically, a vector field ''X'' is a Killing field if the Lie derivative with respect to ''X'' of the metric ''g'' vanishes: :\mathcal_ g = 0 \,. In terms of the Levi-Civita connection, this is :g\left(\nabla_Y X, Z\right) + g\left(Y, \nabla_Z X\right) = 0 \, for all vectors ''Y'' and ''Z''. In local coordinates, this amounts to the Killing equation :\nabla_\mu X_\nu + \nabla_ X_\mu = 0 \,. This condition is expressed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression is an example of a -form, and can be integrated over an interval contained in the domain of : :\int_a^b f(x)\,dx. Similarly, the expression is a -form that can be integrated over a surface : :\int_S (f(x,y,z)\,dx\wedge dy + g(x,y,z)\,dz\wedge dx + h(x,y,z)\,dy\wedge dz). The symbol denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form represents a volume element that can be integrated over a region of space. In general, a -form is an object that may be integrated over a -dimensional manifold, and is homogeneous of degree in the coordinate differentials dx, dy, \ldots. On an -dimensional mani ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon woul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]