HOME
*





Kolmogorov–Arnold–Moser Theorem
The Kolmogorov–Arnold–Moser (KAM) theorem is a result in dynamical systems about the persistence of quasiperiodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics. The problem is whether or not a small perturbation of a conservative dynamical system results in a lasting quasiperiodic orbit. The original breakthrough to this problem was given by Andrey Kolmogorov in 1954. This was rigorously proved and extended by Jürgen Moser in 1962 (for smooth twist maps) and Vladimir Arnold in 1963 (for analytic Hamiltonian systems), and the general result is known as the KAM theorem. Arnold originally thought that this theorem could apply to the motions of the Solar System or other instances of the -body problem, but it turned out to work only for the three-body problem because of a degeneracy in his formulation of the problem for larger numbers of bodies. Later, Gabriella Pinzari showe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical System
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, a dynamical system has a State ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase Space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually consists of all possible values of position and momentum variables. It is the outer product of direct space and reciprocal space. The concept of phase space was developed in the late 19th century by Ludwig Boltzmann, Henri Poincaré, and Josiah Willard Gibbs. Introduction In a phase space, every degree of freedom or parameter of the system is represented as an axis of a multidimensional space; a one-dimensional system is called a phase line, while a two-dimensional system is called a phase plane. For every possible state of the system or allowed combination of values of the system's parameters, a point is included in the multidimensional space. The system's evolving state over time traces a path (a phase-space trajectory for the system) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hofstadter's Butterfly
In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter and is one of the early examples of modern scientific data visualization. The name reflects the fact that, as Hofstadter wrote, "the large gaps n the graphform a very striking pattern somewhat resembling a butterfly." The Hofstadter butterfly plays an important role in the theory of the integer quantum Hall effect and the theory of topological quantum numbers. History The first mathematical description of electrons on a 2D lattice, acted on by a perpendicular homogeneous magnetic field, was studied by Rudolf Peierls and his student R. G. Harper in the 1950s. Hofstadter first described the structure in 1976 in an article on the energy levels of Bloch electrons in perpendicular magnetic fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ergodic Theory
Ergodic theory (Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arnold Diffusion
In applied mathematics, Arnold diffusion is the phenomenon of instability of integrable Hamiltonian systems. The phenomenon is named after Vladimir Arnold who was the first to publish a result in the field in 1964. More precisely, Arnold diffusion refers to results asserting the existence of solutions to nearly integrable Hamiltonian systems that exhibit a significant change in the action variables. Arnold diffusion describes the diffusion of trajectories due to the ergodic theorem in a portion of phase space unbound by any constraints (''i.e.'' unbounded by Lagrangian tori arising from constants of motion) in Hamiltonian systems. It occurs in systems with more than ''N''=2 degrees of freedom, since the ''N''-dimensional invariant tori do not separate the 2''N''-1 dimensional phase space any more. Thus, an arbitrarily small perturbation may cause a number of trajectories to wander pseudo-randomly through the whole portion of phase space left by the destroyed tori. Background and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stability Of The Solar System
The stability of the Solar System is a subject of much inquiry in astronomy. Though the planets have been stable when historically observed, and will be in the short term, their weak gravitational effects on one another can add up in unpredictable ways. For this reason (among others), the Solar System is chaotic in the technical sense of mathematical chaos theory, and even the most precise long-term models for the orbital motion of the Solar System are not valid over more than a few tens of millions of years. The Solar System is stable in human terms, and far beyond, given that it is unlikely any of the planets will collide with each other or be ejected from the system in the next few billion years, and that Earth's orbit will be relatively stable. Since Newton's law of gravitation (1687), mathematicians and astronomers (such as Pierre-Simon Laplace, Joseph Louis Lagrange, Carl Friedrich Gauss, Henri Poincaré, Andrey Kolmogorov, Vladimir Arnold, and Jürgen Moser) have searched ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Herman (mathematician)
Michael Robert Herman (6 November 1942 – 2 November 2000) was a French American mathematician. He was one of the leading experts on the theory of dynamical systems. Born in New York City, he was educated in France. He was a student at École Polytechnique before being one of the first members of the Centre de Mathématiques created there by Laurent Schwartz. In 1976 he earned his PhD at the Paris-Sud 11 University, under supervision of Harold Rosenberg. He introduced Herman rings in 1979. Herman received the Salem Prize in 1976. He was an Invited Speaker of the International Congress of Mathematicians (ICM) in 1978 in Helsinki and the ICM in 1998 in Berlin. Among his students was Jean-Christophe Yoccoz Jean-Christophe Yoccoz (29 May 1957 – 3 September 2016) was a French mathematician. He was awarded a Fields Medal in 1994, for his work on dynamical systems. Biography Yoccoz attended the Lycée Louis-le-Grand, during which time he was a silv ..., 1994 Fields Medalist. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ian C
Ian or Iain is a name of Scottish Gaelic origin, derived from the Hebrew given name (Yohanan, ') and corresponding to the English name John. The spelling Ian is an Anglicization of the Scottish Gaelic forename ''Iain''. It is a popular name in Scotland, where it originated, as well as other English-speaking countries. The name has fallen out of the top 100 male baby names in the United Kingdom, having peaked in popularity as one of the top 10 names throughout the 1960s. In 1900, Ian was the 180th most popular male baby name in England and Wales. , the name has been in the top 100 in the United States every year since 1982, peaking at 65 in 2003. Other Gaelic forms of "John" include "Seonaidh" ("Johnny" from Lowland Scots), "Seon" (from English), "Seathan", and "Seán" and "Eoin" (from Irish). Its Welsh counterpart is Ioan, its Cornish equivalent is Yowan and Breton equivalent is Yann. Notable people named Ian As a first name (alphabetical by family name) *Ian Agol (born 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Through consideration of this set, Cantor and others helped lay the foundations of modern point-set topology. The most common construction is the Cantor ternary set, built by removing the middle third of a line segment and then repeating the process with the remaining shorter segments. Cantor mentioned the ternary construction only in passing, as an example of a more general idea, that of a perfect set that is nowhere dense. More generally, in topology, ''a'' Cantor space is a topological space homeomorphic to the Cantor ternary set (equipped with its subspace topology). By a theorem of Brouwer, this is equivalent to being perfect nonempty, compact metrizable and zero dimensional. Construction and formula of the ternary set The Cantor tern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasiperiodic
Quasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpredictability that does not lend itself to precise measurement. It is different from the mathematical concept of an almost periodic function, which has increasing regularity over multiple periods. The mathematical definition of quasiperiodic function is a completely different concept; the two should not be confused. Climatology Climate oscillations that appear to follow a regular pattern but which do not have a fixed period are called ''quasiperiodic''. Within a dynamical system such as the ocean-atmosphere oscillations may occur regularly, when they are forced by a regular external forcing: for example, the familiar winter-summer cycle is forced by variations in sunlight from the (very close to perfectly) periodic motion of the earth around ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Initial Condition
In mathematics and particularly in dynamic systems, an initial condition, in some contexts called a seed value, is a value of an evolving variable at some point in time designated as the initial time (typically denoted ''t'' = 0). For a system of order ''k'' (the number of time lags in discrete time, or the order of the largest derivative in continuous time) and dimension ''n'' (that is, with ''n'' different evolving variables, which together can be denoted by an ''n''-dimensional coordinate vector), generally ''nk'' initial conditions are needed in order to trace the system's variables forward through time. In both differential equations in continuous time and difference equations in discrete time, initial conditions affect the value of the dynamic variables (state variables) at any future time. In continuous time, the problem of finding a closed form solution for the state variables as a function of time and of the initial conditions is called the initial value p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]