HOME
*





Kantor–Koecher–Tits Construction
In algebra, the Kantor–Koecher–Tits construction is a method of constructing a Lie algebra from a Jordan algebra In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: # xy = yx (commutative law) # (xy)(xx) = x(y(xx)) (). The product of two elements ''x'' and ''y'' in a Jordan alg ..., introduced by , , and . If ''J'' is a Jordan algebra, the Kantor–Koecher–Tits construction puts a Lie algebra structure on ''J'' + ''J'' + Inner(''J''), the sum of 2 copies of ''J'' and the Lie algebra of inner derivations of ''J''. When applied to a 27-dimensional exceptional Jordan algebra it gives a Lie algebra of type E7 of dimension 133. The Kantor–Koecher–Tits construction was used by to classify the finite-dimensional simple Jordan superalgebras. References * * * * * {{DEFAULTSORT:Kantor-Koecher-Tits construction Lie algebras Non-associative algebras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jordan Algebra
In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: # xy = yx (commutative law) # (xy)(xx) = x(y(xx)) (). The product of two elements ''x'' and ''y'' in a Jordan algebra is also denoted ''x'' ∘ ''y'', particularly to avoid confusion with the product of a related associative algebra. The axioms imply that a Jordan algebra is power-associative, meaning that x^n = x \cdots x is independent of how we parenthesize this expression. They also imply that x^m (x^n y) = x^n(x^m y) for all positive integers ''m'' and ''n''. Thus, we may equivalently define a Jordan algebra to be a commutative, power-associative algebra such that for any element x, the operations of multiplying by powers x^n all commute. Jordan algebras were first introduced by to formalize the notion of an algebra of observables in quantum mechanics. They were originally called "r-number systems", but were renamed "Jordan algebras" by , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Albert Algebra
In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism.Springer & Veldkamp (2000) 5.8, p.153 One of them, which was first mentioned by and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation :x \circ y = \frac12 (x \cdot y + y \cdot x), where \cdot denotes matrix multiplication. Another is defined the same way, but using split octonions instead of octonions. The final is constructed from the non-split octonions using a different standard involution. Over any algebraically closed field, there is just one Albert algebra, and its automorphism group ''G'' is the simple split group of type F4.Springer & Veldkamp (2000) 7.2 (For example, the complexifications of the three Albert algebras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

E7 (mathematics)
In mathematics, E7 is the name of several closely related Lie groups, linear algebraic groups or their Lie algebras e7, all of which have dimension 133; the same notation E7 is used for the corresponding root lattice, which has rank 7. The designation E7 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled A''n'', B''n'', C''n'', D''n'', and five exceptional cases labeled E6, E7, E8, F4, and G2. The E7 algebra is thus one of the five exceptional cases. The fundamental group of the (adjoint) complex form, compact real form, or any algebraic version of E7 is the cyclic group Z/2Z, and its outer automorphism group is the trivial group. The dimension of its fundamental representation is 56. Real and complex forms There is a unique complex Lie algebra of type E7, corresponding to a complex group of complex dimension 133. The complex adjoint Lie group E7 of complex dimension 133 can be considered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jordan Superalgebra
In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: # xy = yx (commutative law) # (xy)(xx) = x(y(xx)) (). The product of two elements ''x'' and ''y'' in a Jordan algebra is also denoted ''x'' ∘ ''y'', particularly to avoid confusion with the product of a related associative algebra. The axioms imply that a Jordan algebra is power-associative, meaning that x^n = x \cdots x is independent of how we parenthesize this expression. They also imply that x^m (x^n y) = x^n(x^m y) for all positive integers ''m'' and ''n''. Thus, we may equivalently define a Jordan algebra to be a commutative, power-associative algebra such that for any element x, the operations of multiplying by powers x^n all commute. Jordan algebras were first introduced by to formalize the notion of an algebra of observables in quantum mechanics. They were originally called "r-number systems", but were renamed "Jordan algebras" by , w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

American Journal Of Mathematics
The ''American Journal of Mathematics'' is a bimonthly mathematics journal published by the Johns Hopkins University Press. History The ''American Journal of Mathematics'' is the oldest continuously published mathematical journal in the United States, established in 1878 at the Johns Hopkins University by James Joseph Sylvester, an English-born mathematician who also served as the journal's editor-in-chief from its inception through early 1884. Initially W. E. Story was associate editor in charge; he was replaced by Thomas Craig in 1880. For volume 7 Simon Newcomb became chief editor with Craig managing until 1894. Then with volume 16 it was "Edited by Thomas Craig with the Co-operation of Simon Newcomb" until 1898. Other notable mathematicians who have served as editors or editorial associates of the journal include Frank Morley, Oscar Zariski, Lars Ahlfors, Hermann Weyl, Wei-Liang Chow, S. S. Chern, André Weil, Harish-Chandra, Jean Dieudonné, Henri Cartan, Stephen S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebras
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings (Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups of ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]