HOME
*





K-optimal Pattern Discovery
K-optimal pattern discovery is a data mining technique that provides an alternative to the frequent pattern discovery approach that underlies most association rule learning techniques. Frequent pattern discovery techniques find all patterns for which there are sufficiently frequent examples in the sample data. In contrast, k-optimal pattern discovery techniques find the ''k'' patterns that optimize a user-specified measure of interest. The parameter ''k'' is also specified by the user. Examples of k-optimal pattern discovery techniques include: * k-optimal classification rule discovery. * k-optimal subgroup discovery. * finding k most interesting patterns using sequential sampling. * mining top.k frequent closed patterns without minimum support. * k-optimal rule discovery. In contrast to k-optimal rule discovery and frequent pattern mining techniques, subgroup discovery focuses on mining interesting patterns with respect to a specified target property of interest. This include ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frequent Pattern Discovery
Frequent pattern discovery (or FP discovery, FP mining, or Frequent itemset mining) is part of knowledge discovery in databases, Massive Online Analysis, and data mining; it describes the task of finding the most frequent and relevant patterns in large datasets. The concept was first introduced for mining transaction databases. Frequent patterns are defined as subsets (itemsets, subsequences, or substructures) that appear in a data set with frequency no less than a user-specified or auto-determined threshold. Techniques Techniques for FP mining include: * market basket analysis * cross-marketing * catalog design * clustering * classification * recommendation systems For the most part, FP discovery can be done using association rule learning with particular algorithms Eclat, FP-growth and the Apriori algorithm. Other strategies include: *Frequent subtree mining * Structure mining *Sequential pattern mining and respective specific techniques. Implementations exist for v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Association Rule Learning
Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness.Piatetsky-Shapiro, Gregory (1991), ''Discovery, analysis, and presentation of strong rules'', in Piatetsky-Shapiro, Gregory; and Frawley, William J.; eds., ''Knowledge Discovery in Databases'', AAAI/MIT Press, Cambridge, MA. In any given transaction with a variety of items, association rules are meant to discover the rules that determine how or why certain items are connected. Based on the concept of strong rules, Rakesh Agrawal, Tomasz ImieliƄski and Arun Swami introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For example, the rule \ \Rightarrow \ found in the sales data of a supermarket would indicate that if a customer buys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data
In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures. Data may be used as variables in a computational process. Data may represent abstract ideas or concrete measurements. Data is commonly used in scientific research, economics, and in virtually every other form of human organizational activity. Examples of data sets include price indices (such as consumer price index), unemployment rates, literacy rates, and census data. In this context, data represents the raw facts and figures which can be used in such a manner in order to capture the useful information out of it. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Correlation
In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are ''linearly'' related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the so-called demand curve. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ontology (computer Science)
In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject. Every academic discipline or field creates ontologies to limit complexity and organize data into information and knowledge. Each uses ontological assumptions to frame explicit theories, research and applications. New ontologies may improve problem solving within that domain. Translating research papers within every field is a problem made easier when experts from different countries maintain a controlled vocabulary of jargon between each of their languages. For instance, the definition and ontology of economics is a primary concern in Marxist econo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]