John N. Mather
   HOME
*





John N. Mather
John Norman Mather (June 9, 1942 – January 28, 2017) was a mathematician at Princeton University known for his work on singularity theory and Hamiltonian dynamics. He was descended from Atherton Mather (1663–1734), a cousin of Cotton Mather. His early work dealt with the stability of smooth mappings between smooth manifolds of dimensions ''n'' (for the source manifold ''N'') and ''p'' (for the target manifold ''P''). He determined the precise dimensions ''(n,p)'' for which smooth mappings are stable with respect to smooth equivalence by diffeomorphisms of the source and target (i.e., infinitely differentiable coordinate changes). Mather also proved the conjecture of the French topologist René Thom that under topological equivalence smooth mappings are generically stable: the subset of the space of smooth mappings between two smooth manifolds consisting of the topologically stable mappings is a dense subset in the smooth Whitney topology. His notes on the topic of topolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Research Institute Of Oberwolfach
The Oberwolfach Research Institute for Mathematics (german: Mathematisches Forschungsinstitut Oberwolfach) is a center for mathematical research in Oberwolfach, Germany. It was founded by mathematician Wilhelm Süss in 1944. It organizes weekly workshops on diverse topics where mathematicians and scientists from all over the world come to do collaborative research. The Institute is a member of the Leibniz Association, funded mainly by the German Federal Ministry of Education and Research and by the state of Baden-Württemberg. It also receives substantial funding from the ''Friends of Oberwolfach'' foundation, from the ''Oberwolfach Foundation'' and from numerous donors. History The Oberwolfach Research Institute for Mathematics (MFO) was founded as the ''Reich Institute of Mathematics'' (German: ''Reichsinstitut für Mathematik'') on 1 September 1944. It was one of several research institutes founded by the Nazis in order to further the German war effort, which at that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singularity Theory
In mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it on the floor, and flattening it. In some places the flat string will cross itself in an approximate "X" shape. The points on the floor where it does this are one kind of singularity, the double point: one bit of the floor corresponds to more than one bit of string. Perhaps the string will also touch itself without crossing, like an underlined "U". This is another kind of singularity. Unlike the double point, it is not ''stable'', in the sense that a small push will lift the bottom of the "U" away from the "underline". Vladimir Arnold defines the main goal of singularity theory as describing how objects depend on parameters, particularly in cases where the properties undergo sudden change under a small variation of the parameters. These ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Painlevé Conjecture
In physics, the Painlevé conjecture is a theorem about singularities among the solutions to the ''n''-body problem: there are noncollision singularities for ''n'' ≥ 4. The theorem was proven for ''n'' ≥ 5 in 1988 by Jeff Xia and for n=4 in 2014 by Jinxin Xue. Background and statement Solutions (\mathbf,\mathbf) of the ''n''-body problem \dot = M^\mathbf,\; \dot = \nabla U(\mathbf) (where M are the masses and U denotes the gravitational potential) are said to have a singularity if there is a sequence of times t_n converging to a finite t^* where \nabla U\left(\mathbf\left(t_n\right)\right) \rightarrow \infty. That is, the forces and accelerations become infinite at some finite point in time. A ''collision singularity'' occurs if \mathbf(t) tends to a definite limit when t \rightarrow t^*, t. If the limit does not exist the singularity is called a ''pseudocollision'' or ''noncollision'' singularity.

Richard McGehee
Richard Paul McGehee (born 20 September 1943, in San Diego) is an American mathematician, who works on dynamical systems with special emphasis on celestial mechanics. McGehee received from Caltech in 1964 his bachelor's degree and from University of Wisconsin–Madison in 1965 his master's degree and in 1969 his Ph.D. under Charles C. Conley with thesis ''Homoclinic orbits in the restricted three body problem''. As a postdoc he was at the Courant Institute of Mathematical Sciences of New York University. In 1970 he became an assistant professor and in 1979 a full professor at the University of Minnesota in Minneapolis, where he was from 1994 to 1998 the director of the Center for the Computation and Visualization of Geometric Structures. In the 1970s he introduced a coordinate transformation (now known as the McGehee transformation) which he used to regularize singularities arising in the Newtonian three-body problem. In 1975 he, with John N. Mather, proved that for the Newtonia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anosov Diffeomorphism
In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold ''M'' is a certain type of mapping, from ''M'' to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems. Anosov diffeomorphisms were introduced by Dmitri Victorovich Anosov, who proved that their behaviour was in an appropriate sense ''generic'' (when they exist at all). Dmitri V. Anosov, ''Geodesic flows on closed Riemannian manifolds with negative curvature'', (1967) Proc. Steklov Inst. Mathematics. 90. Overview Three closely related definitions must be distinguished: * If a differentiable map ''f'' on ''M'' has a hyperbolic structure on the tangent bundle, then it is called an Anosov map. Examples include the Bernoulli map,_and_Arnold's_cat_map.html" ;"title=", 1)^\infty : x \mapsto (x_0, x_1, x_2, ..., and Arnold's cat map">, 1)^\infty : x \mapsto (x_0, x_1, x_2, ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mather Spectrum
Mather may refer to: People * Mather (given name), a list of people with the given name * Mather (surname), a list of people with the surname Places * Mather, California (other) * Mather, Manitoba, Canada, a community * Mather, Pennsylvania, an unincorporated community * Mather, Wisconsin, an unincorporated community * 49700 Mather, an asteroid * Mather Air Force Base, east of Sacramento, California * Mathers Bridge, Merritt Island, Florida * Mather Gorge, on the border between Maryland and Virginia * Mount Mather (other) Other uses * Mather House (other) * Mather Stock Car Company, an American corporation that built railroad rolling stock * Mather Inn, a hotel in Ishpeming, Michigan * Mather Tower, Chicago, Illinois * The Mather School, oldest public elementary school in North America See also * Mathers Mathers is an English surname and may refer to: * Edward Peter Mathers (1850–1924), British journalist and newspaper proprietor * Edward ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topologically Stratified Space
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Whitney Topology
In mathematics, and especially differential topology, functional analysis and singularity theory, the Whitney topologies are a countably infinite family of topologies defined on the set of smooth mappings between two smooth manifolds. They are named after the American mathematician Hassler Whitney. Construction Let ''M'' and ''N'' be two real, smooth manifolds. Furthermore, let C∞(''M'',''N'') denote the space of smooth mappings between ''M'' and ''N''. The notation C∞ means that the mappings are infinitely differentiable, i.e. partial derivatives of all orders exist and are continuous. Whitney C''k''-topology For some integer , let J''k''(''M'',''N'') denote the ''k''-jet space of mappings between ''M'' and ''N''. The jet space can be endowed with a smooth structure (i.e. a structure as a C∞ manifold) which make it into a topological space. This topology is used to define a topology on C∞(''M'',''N''). For a fixed integer consider an open subset and denote by ''Sk' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


René Thom
René Frédéric Thom (; 2 September 1923 – 25 October 2002) was a French mathematician, who received the Fields Medal in 1958. He made his reputation as a topologist, moving on to aspects of what would be called singularity theory; he became world-famous among the wider academic community and the educated general public for one aspect of this latter interest, his work as founder of catastrophe theory (later developed by Erik Christopher Zeeman). Life and career René Thom grow up in a modest family in Montbéliard, Doubs and obtained a Baccalauréat in 1940. After German invasion of France, his family took refuge in Switzerland and then in Lyon. In 1941 he moved to Paris to attend Lycée Saint-Louis and in 1943 he began studying mathematics at École Normale Supérieure, becoming agrégé in 1946. He received his PhD in 1951 from the University of Paris. His thesis, titled ''Espaces fibrés en sphères et carrés de Steenrod'' (''Sphere bundles and Steenrod squares''), was w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two manifolds M and N, a differentiable map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X\to Y is said to be smooth if for all p in X there is a neighbor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]