Jacobi Matrix (operator)
   HOME
*





Jacobi Matrix (operator)
A Jacobi operator, also known as Jacobi matrix, is a symmetric linear operator acting on sequences which is given by an infinite tridiagonal matrix. It is commonly used to specify systems of orthonormal polynomials over a finite, positive Borel measure. This operator is named after Carl Gustav Jacob Jacobi. The name derives from a theorem from Jacobi, dating to 1848, stating that every symmetric matrix over a principal ideal domain is congruent to a tridiagonal matrix. Self-adjoint Jacobi operators The most important case is the one of self-adjoint Jacobi operators acting on the Hilbert space of square summable sequences over the positive integers \ell^2(\mathbb). In this case it is given by :Jf_0 = a_0 f_1 + b_0 f_0, \quad Jf_n = a_n f_ + b_n f_n + a_ f_, \quad n>0, where the coefficients are assumed to satisfy :a_n >0, \quad b_n \in \mathbb. The operator will be bounded if and only if the coefficients are bounded. There are close connections with the theory of orthogonal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lax Pair
In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the ''Lax equation''. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems. Definition A Lax pair is a pair of matrices or operators L(t), P(t) dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation: :\frac= ,L/math> where ,LPL-LP is the commutator. Often, as in the example below, P depends on L in a prescribed way, so this is a nonlinear equation for L as a function of t. Isospectral property It can then be shown that the eigenvalues and more generally the spectrum of ''L'' are independent of ''t''. The matrices/operators ''L'' are said to be ''isospectral'' as t varies. The core observation is that the matrices L(t) are all similar by virtue of :L(t)=U(t,s) L( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any base (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalue
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shift Operator
In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution. Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. Definition Functions of a real variable The shift operator (where ) takes a function on R to its translation , : T^t f(x) = f_t(x) = f(x+t)~. A practical operational calculus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hessenberg Matrix
In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. They are named after Karl Hessenberg. Definitions Upper Hessenberg matrix A square n \times n matrix A is said to be in upper Hessenberg form or to be an upper Hessenberg matrix if a_=0 for all i,j with i > j+1. An upper Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero, i.e. if a_ \neq 0 for all i \in \. Lower Hessenberg matrix A square n \times n matrix A is said to be in lower Hessenberg form or to be a lower Hessenberg matrix if its transpose is an upper Hessenberg matrix or equivalently if a_=0 for all i,j with j > i+1. A lower Hessenberg matrix is called unreduced if all superdiagonal entries are nonzero, i.e. if a_ \neq 0 for all i \in \. Examples Consider the following matri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hessenberg Operator
Hessenberg may refer to: People: *Gerhard Hessenberg (1874–1925), German mathematician *Karl Hessenberg (1904–1959), German mathematician and engineer *Kurt Hessenberg (1908–1994), German composer and professor at the Hochschule für Musik und Darstellende Kunst in Frankfurt am Main Mathematics: *Hessenberg matrix, one that is "almost" triangular *Hessenberg variety In geometry, Hessenberg varieties, first studied by Filippo De Mari, Claudio Procesi, and Mark A. Shayman, are a family of subvarieties of the full flag variety which are defined by a Hessenberg function ''h'' and a linear transformation ''X'' ...
, a family of subvarieties of the full flag variety which are defined by a Hessenberg function h and a linear transformation X {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bergman Polynomial
Bergman is a surname of German, Swedish, Dutch and Yiddish origin meaning 'mountain man', or sometimes (only in German) 'miner'.https://www.ancestry.com/name-origin?surname=bergmann People * Alan Bergman (born 1925), American songwriter * Alan Bergman (1943–2010), American ballet dancer * Alfred Bergman (1889–1961), American baseball and football player * Amanda Bergman (born 1987), Swedish musician *Andrew Bergman (born 1945), American film director * Anita Bergman, Canadian politician * Bo Bergman (1869–1967), Swedish poet * Borah Bergman (1926–2012), American pianist * Cam Bergman (born 1983), Canadian lacrosse player * Carl Bergman (born 1987), Swedish tennis player * Carl Johan Bergman (born 1978), Swedish biathlete * Charlotte Bergman (1903–2002), Belgian art collector and philanthropist * Christian Bergman (born 1988), American baseball player * Dag Bergman (1914–1984), Swedish diplomat *Daniel Bergman (born 1962), Swedish film director *Dave Bergman (1953–2015 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Functions
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Square-integrable
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real number, real- or complex number, complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-integrability on the real line (-\infty,+\infty) is defined as follows. One may also speak of quadratic integrability over bounded intervals such as [a,b] for a \leq b. An equivalent definition is to say that the square of the function itself (rather than of its absolute value) is Lebesgue integrable. For this to be true, the integrals of the positive and negative portions of the real part must both be finite, as well as those for the imaginary part. The vector space of square integrable functions (with respect to Lebesgue measure) forms the Lp space, ''Lp'' space with p=2. Among the ''Lp'' spaces, the class of square integrable functions is unique in being compatible with an Inner ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bergman Space
In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain ''D'' of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for , the Bergman space is the space of all holomorphic functions f in ''D'' for which the p-norm is finite: :\, f\, _ := \left(\int_D , f(x+iy), ^p\,\mathrm dx\,\mathrm dy\right)^ < \infty. The quantity \, f\, _ is called the ''norm'' of the function ; it is a true if p \geq 1. Thus is the subspace of holomorphic functions that are in the space L''p''(''D''). The Bergman spaces are

picture info

Gaussian Quadrature
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree or less by a suitable choice of the nodes and weights for . The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as , so the rule is stated as :\int_^1 f(x)\,dx \approx \sum_^n w_i f(x_i), which is exact for polynomials of degree or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if is well-approximated by a polynomial of degree or less on . The Gaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]