JARID1B
   HOME
*





JARID1B
Lysine-specific demethylase 5B also known as histone demethylase JARID1B is a demethylase enzyme that in humans is encoded by the ''KDM5B'' gene. JARID1B belongs to the alpha-ketoglutarate-dependent hydroxylase superfamily. Function Jarid1B (also known as KDM5B or PLU1) is in the family of JHDM genes. These are responsible for demethylation of tri- and di-methylated lysines in the 4 position of histone 3 (H3K4me3 and H3K4me2). Jarid1B is a multidomain enzyme that is part of the subfamily KDM5. The whole Jarid1 family is a protein family that possesses H3K4 histone demethylase activity. Jarid1B has been implicated in the development of prostate, breast, and skin cancer and also has been associated with melanoma maintenance. Knockout mice (Jarid1b−/−) produced are viable in neonatal life. These mice do exhibit the phenotype of premature mortality, decreased fertility in female mice, reduction in body weight and impairment in mammary gland development. It also acted to decreas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FOXG1
Forkhead box protein G1 is a protein that in humans is encoded by the ''FOXG1'' gene. Function This gene belongs to the forkhead family of transcription factors that is characterized by a distinct forkhead domain. The complete function of this gene has not yet been determined; however, it has been shown to play a role in the development of the brain and telencephalon. Mutations of FOXG1 are the cause of FoxG1 Syndrome. FOXG1 syndrome FoxG1 Syndrome is characterized by microcephaly and brain malformations. It affects most aspects of development and can cause seizures. FOXG1 syndrome is classified as an autism spectrum disorder and was previously considered a variant of Rett syndrome. Interactions FOXG1 has been shown to interact with JARID1B. See also * FOX proteins FOX (forkhead box) proteins are a family of transcription factors that play important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation, and longevity. Man ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PAX9
Paired box gene 9, also known as PAX9, is a protein which in humans is encoded by the ''PAX9'' gene. It is also found in other mammals. Expression and function This gene is a member of the paired box (PAX) family of transcription factors. During mouse embryogenesis Pax9 expression starts from embryonic day 8.5 and becomes more evident by E9.5; at this stage its expression is restricted to the pharyngeal endoderm. Later on, Pax9 is also expressed in the axial skeleton. Pax9 is required for craniofacial, tooth and limb development, and may more generally involve development of stratified squamous epithelia as well as various organs and skeletal elements. PAX9 plays a role in the absence of wisdom teeth in some human populations (possibly along with the less well studied AXIN2 and MSX1). Clinical significance This gene was found amplified in lung cancer. The amplification covers three tissue developmental genes - TTF1, NKX2-8, and PAX9. It appears that certain lung cancer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Demethylase
Demethylases are enzymes that remove methyl (CH3) groups from nucleic acids, proteins (particularly histones), and other molecules. Demethylases are important epigenetic proteins, as they are responsible for transcriptional regulation of the genome by controlling the methylation of DNA and histones, and by extension, the chromatin state at specific gene loci. Histone lysine demethylation Histone methylation was initially considered an effectively irreversible process as the half-life of the histone methylation was approximately equal to the histone half-life. Histone lysine demethylase LSD1 (later classified as KDM1A) was first identified in 2004 as a nuclear amine oxidase homolog. Two main classes of histone lysine demethylases exist, defined by their mechanisms: flavin adenine dinucleotide (FAD)-dependent amine oxidases and α-ketoglutarate-dependent hydroxylases. Histone lysine demethylases possess a variety of domains that are responsible for histone recognition, DNA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures. Like all catalysts, enzymes increase the reaction ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alpha-ketoglutarate-dependent Hydroxylase
Alpha-ketoglutarate-dependent hydroxylases are a major class of non-heme iron proteins that catalyse a wide range of reactions. These reactions include hydroxylation reactions, demethylations, ring expansions, ring closures, and desaturations. Functionally, the αKG-dependent hydroxylases are comparable to cytochrome P450 enzymes. Both use O2 and reducing equivalents as cosubstrates and both generate water. Biological function αKG-dependent hydroxylases have diverse roles. In microorganisms such as bacteria, αKG-dependent dioxygenases are involved in many biosynthetic and metabolic pathways; for example, in ''E. coli'', the AlkB enzyme is associated with the repair of damaged DNA. In plants, αKG-dependent dioxygenases are involved in diverse reactions in plant metabolism. These include flavonoid biosynthesis, and ethylene biosyntheses. In mammals and humans, αKG-dependent dioxygenase have functional roles in biosyntheses (e.g. collagen biosynthesis and L-carnitine biosynthe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

H3K4me3
H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addition of three methyl groups ( trimethylation) to the lysine 4 on the histone H3 protein. H3 is used to package DNA in eukaryotic cells (including human cells), and modifications to the histone alter the accessibility of genes for transcription. H3K4me3 is commonly associated with the activation of transcription of nearby genes. H3K4 trimethylation regulates gene expression through chromatin remodeling by the NURF complex. This makes the DNA in the chromatin more accessible for transcription factors, allowing the genes to be transcribed and expressed in the cell. More specifically, H3K4me3 is found to positively regulate transcription by bringing histone acetylases and nucleosome remodelling enzymes (NURF). H3K4me3 also plays an impor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transcription Factors
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization (body plan) during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are up to 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome. TFs work alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment of RNA po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human 2OG Oxygenases
Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture, and language. Humans are highly social and tend to live in complex social structures composed of many cooperating and competing groups, from families and kinship networks to political states. Social interactions between humans have established a wide variety of values, social norms, and rituals, which bolster human society. Its intelligence and its desire to understand and influence the environment and to explain and manipulate phenomena have motivated humanity's development of science, philosophy, mythology, religion, and other fields of study. Although some scientists equate the term ''humans'' with all members of the genus ''Homo'', in common usage, it generally refers to ''Homo sapiens'', the only extant member. Anatomically modern hu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]