HOME
*





Japanese Theorem For Cyclic Quadrilaterals
In geometry, the Japanese theorem states that the centers of the incircles of certain triangles inside a cyclic quadrilateral are vertices of a rectangle. Triangulating an arbitrary cyclic quadrilateral by its diagonals yields four overlapping triangles (each diagonal creates two triangles). The centers of the incircles of those triangles form a rectangle. Specifically, let be an arbitrary cyclic quadrilateral and let , , , be the incenters of the triangles , , , . Then the quadrilateral formed by , , , is a rectangle. Note that this theorem is easily extended to prove the Japanese theorem for cyclic polygons. To prove the quadrilateral case, simply construct the parallelogram tangent to the corners of the constructed rectangle, with sides parallel to the diagonals of the quadrilateral. The construction shows that the parallelogram is a rhombus, which is equivalent to showing that the sums of the radii of the incircles tangent to each diagonal are equal. The quadrilateral cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Japanese Theorem 2
Japanese may refer to: * Something from or related to Japan, an island country in East Asia * Japanese language, spoken mainly in Japan * Japanese people, the ethnic group that identifies with Japan through ancestry or culture ** Japanese diaspora, Japanese emigrants and their descendants around the world * Japanese citizens, nationals of Japan under Japanese nationality law ** Foreign-born Japanese, naturalized citizens of Japan * Japanese writing system, consisting of kanji and kana * Japanese cuisine, the food and food culture of Japan See also * List of Japanese people * * Japonica (other) * Japonicum * Japonicus * Japanese studies Japanese studies (Japanese: ) or Japan studies (sometimes Japanology in Europe), is a sub-field of area studies or East Asian studies involved in social sciences and humanities research on Japan. It incorporates fields such as the study of Japanese ... {{disambiguation Language and nationality disambiguation pages ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangles
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of Euclid's Elements. The names used for modern classification are eith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Quadrilateral
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''concyclic''. The center of the circle and its radius are called the ''circumcenter'' and the ''circumradius'' respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek (''kuklos''), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a non-square rhombus. The section characterizations below states what n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectangle
In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a ''square''. The term "oblong" is occasionally used to refer to a non-square rectangle. A rectangle with vertices ''ABCD'' would be denoted as . The word rectangle comes from the Latin ''rectangulus'', which is a combination of ''rectus'' (as an adjective, right, proper) and ''angulus'' (angle). A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals (therefore only two sides are parallel). It is a special case of an antiparallelogram, and its angles are not right angles and not all equal, though opposite angles are equal. Other geometries, such as spherical, elliptic, and hyperboli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Japanese Theorem For Cyclic Polygons
__notoc__ In geometry, the Japanese theorem states that no matter how one triangulates a cyclic polygon, the sum of inradii of triangles is constant.Johnson, Roger A., ''Advanced Euclidean Geometry'', Dover Publ., 2007 (orig. 1929). Conversely, if the sum of inradii is independent of the triangulation, then the polygon is cyclic. The Japanese theorem follows from Carnot's theorem; it is a Sangaku problem. Proof This theorem can be proven by first proving a special case: no matter how one triangulates a cyclic ''quadrilateral'', the sum of inradii of triangles is constant. After proving the quadrilateral case, the general case of the cyclic polygon theorem is an immediate corollary. The quadrilateral rule can be applied to quadrilateral components of a general partition of a cyclic polygon, and repeated application of the rule, which "flips" one diagonal, will generate all the possible partitions from any given partition, with each "flip" preserving the sum of the inradii. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carnot's Theorem (inradius, Circumradius)
In Euclidean geometry, Carnot's theorem states that the sum of the signed distances from the circumcenter ''D'' to the sides of an arbitrary triangle ''ABC'' is :DF + DG + DH = R + r,\ where ''r'' is the inradius and ''R'' is the circumradius of the triangle. Here the sign of the distances is taken to be negative if and only if the open line segment ''DX'' (''X'' = ''F'', ''G'', ''H'') lies completely outside the triangle. In the diagram, ''DF'' is negative and both ''DG'' and ''DH'' are positive. The theorem is named after Lazare Carnot (1753–1823). It is used in a proof of the Japanese theorem for concyclic polygons. References *Claudi Alsina, Roger B. Nelsen: ''When Less is More: Visualizing Basic Inequalities''. MAA, 2009, , 99*Frédéric Perrier: ''Carnot's Theorem in Trigonometric Disguise''. The Mathematical Gazette, Volume 91, No. 520 (March, 2007), pp. 115–117JSTOR *David Richeson''The Japanese Theorem for Nonconvex Polygons – Carnot's Theorem'' Convergenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sangaku
Sangaku or San Gaku ( ja, 算額, lit=calculation tablet) are Japanese geometrical problems or theorems on wooden tablets which were placed as offerings at Shinto shrines or Buddhist temples during the Edo period by members of all social classes. History The Sangaku were painted in color on wooden tablets ( ema) and hung in the precincts of Buddhist temples and Shinto shrines as offerings to the kami and buddhas, as challenges to the congregants, or as displays of the solutions to questions. Many of these tablets were lost during the period of modernization that followed the Edo period, but around nine hundred are known to remain. Fujita Kagen (1765–1821), a Japanese mathematician of prominence, published the first collection of ''sangaku'' problems, his ''Shimpeki Sampo'' (Mathematical problems Suspended from the Temple) in 1790, and in 1806 a sequel, the ''Zoku Shimpeki Sampo''. During this period Japan applied strict regulations to commerce and foreign relations for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Japanese Mathematics
denotes a distinct kind of mathematics which was developed in Japan during the Edo period (1603–1867). The term ''wasan'', from ''wa'' ("Japanese") and ''san'' ("calculation"), was coined in the 1870s and employed to distinguish native Japanese mathematical theory from Western mathematics (洋算 ''yōsan''). In the history of mathematics, the development of ''wasan'' falls outside the Western realm. At the beginning of the Meiji period (1868–1912), Japan and its people opened themselves to the West. Japanese scholars adopted Western mathematical technique, and this led to a decline of interest in the ideas used in ''wasan''. History The Japanese mathematical Model (abstract), schema evolved during a period when Japan's people were isolated from European influences, but instead borrowed from ancient mathematical texts written in China, including those from the Yuan dynasty and earlier. The Japanese mathematicians Yoshida Koyu, Yoshida Shichibei Kōyū, Imamura Chishō, and T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cut-the-Knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Mathematics, senior instructor at Hebrew University and software consultant at Ben Gurion University. He wrote extensively about arithmetic, probability, algebra, geometry, trigonometry and mathematical games. He was known for his contribution to heuristics and mathematics education, creating and maintaining the mathematically themed educational website ''Cut-the-Knot'' for the Mathematical Association of America (MAA) Online. He was a pioneer in mathematical education on the internet, having started ''Cut-the-Knot'' in October 1996.Interview with Alexander ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Plane Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logical system in which each result is '' proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory, explained in geometrical language. For more than two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geomet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]