Jacobian (other)
In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: *Jacobian matrix and determinant * Jacobian elliptic functions *Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by put ... {{set index Mathematical terminology ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carl Gustav Jacob Jacobi
Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occasionally written as Carolus Gustavus Iacobus Iacobi in his Latin books, and his first name is sometimes given as Karl. Jacobi was the first Jewish mathematician to be appointed professor at a German university. Biography Jacobi was born of Ashkenazi Jewish parentage in Potsdam on 10 December 1804. He was the second of four children of banker Simon Jacobi. His elder brother Moritz von Jacobi would also become known later as an engineer and physicist. He was initially home schooled by his uncle Lehman, who instructed him in the classical languages and elements of mathematics. In 1816, the twelve-year-old Jacobi went to the Potsdam Gymnasium, where students were taught all the standard subjects: classical languages, history, philology, mathem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobian Matrix And Determinant
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. Suppose is a function such that each of its first-order partial derivatives exist on . This function takes a point as input and produces the vector as output. Then the Jacobian matrix of is defined to be an matrix, denoted by , whose th entry is \mathbf J_ = \frac, or explicitly :\mathbf J = \begin \dfrac & \cdots & \dfrac \end = \begin \nabla^ f_1 \\ \vdots \\ \nabla^ f_m \end = \begin \dfrac & \cdots & \dfrac\\ \vdots & \ddots & \vdots\\ \dfrac & \cdots ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobian Elliptic Functions
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation \operatorname for \sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by . Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later. Overview There are twelve Jacobi elliptic fun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobian Variety
In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian variety. Introduction The Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension ''g'', and hence, over the complex numbers, it is a complex torus. If ''p'' is a point of ''C'', then the curve ''C'' can be mapped to a subvariety of ''J'' with the given point ''p'' mapping to the identity of ''J'', and ''C'' generates ''J'' as a group. Construction for complex curves Over the complex numbers, the Jacobian variety can be realized as the quotient space ''V''/''L'', where ''V'' is the dual of the vector space of all global holomorphic differentials on ''C'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intermediate Jacobian
In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by putting a complex manifold, complex structure on the torus H^n(M,\R)/H^n(M,\Z) for ''n'' odd. There are several different natural ways to put a complex structure on this torus, giving several different sorts of intermediate Jacobians, including one due to and one due to . The ones constructed by Weil have natural polarizations if ''M'' is projective, and so are abelian varieties, while the ones constructed by Griffiths behave well under holomorphic deformations. A complex structure on a real vector space is given by an automorphism ''I'' with square -1. The complex structures on H^n(M,\R) are defined using the Hodge decomposition : H^(M,) \otimes = H^(M)\oplus\cdots\oplus H^(M). On H^ the Weil complex structure I_W is multiplication by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |