HOME
*





Jackson Integral
In q-analog theory, the Jackson integral series in the theory of special functions that expresses the operation inverse to q-differentiation. The Jackson integral was introduced by Frank Hilton Jackson. For methods of numerical evaluation, see and . Definition Let ''f''(''x'') be a function of a real variable ''x''. For ''a'' a real variable, the Jackson integral of ''f'' is defined by the following series expansion: : \int_0^a f(x)\,_q x = (1-q)\,a\sum_^q^k f(q^k a). Consistent with this is the definition for a \to \infty \int_0^\infty f(x)\,_q x = (1-q)\sum_^q^k f(q^k ). More generally, if ''g''(''x'') is another function and ''D''''q''''g'' denotes its ''q''-derivative, we can formally write : \int f(x)\,D_q g\,_q x = (1-q)\,x\sum_^q^k f(q^k x)\,D_q g(q^k x) = (1-q)\,x\sum_^q^k f(q^k x)\tfrac, or : \int f(x)\,_q g(x) = \sum_^ f(q^k x)\cdot(g(q^x)-g(q^x)), giving a ''q''-analogue of the Riemann–Stieltjes integral. Jackson integral as q-antiderivative J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-analog
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.Exton, H. (1983), ''q-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, , , ''q''-analogues are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Series (mathematics)
In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For a long time, the idea that such a potentially infinite summation could produce a finite result was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th century. Zeno's paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at the beginning of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Functions
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by consensus, and thus lacks a general formal definition, but the List of mathematical functions contains functions that are commonly accepted as special. Tables of special functions Many special functions appear as solutions of differential equations or integrals of elementary functions. Therefore, tables of integrals usually include descriptions of special functions, and tables of special functions include most important integrals; at least, the integral representation of special functions. Because symmetries of differential equations are essential to both physics and mathematics, the theory of special functions is closely related to the theory of Lie groups and Lie algebras, as well as certain topics in mathematical physics. Symbolic c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-differentiation
In mathematics, in the area of combinatorics and quantum calculus, the ''q''-derivative, or Jackson derivative, is a ''q''-analog of the ordinary derivative, introduced by Frank Hilton Jackson. It is the inverse of Jackson's ''q''-integration. For other forms of q-derivative, see . Definition The ''q''-derivative of a function ''f''(''x'') is defined as :\left(\frac\right)_q f(x)=\frac. It is also often written as D_qf(x). The ''q''-derivative is also known as the Jackson derivative. Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator :D_q= \frac ~ \frac ~, which goes to the plain derivative \to \frac as q \to 1. It is manifestly linear, :\displaystyle D_q (f(x)+g(x)) = D_q f(x) + D_q g(x)~. It has a product rule analogous to the ordinary derivative product rule, with two equivalent forms :\displaystyle D_q (f(x)g(x)) = g(x)D_q f(x) + f(qx)D_q g(x) = g(qx)D_q f(x) + f(x)D_q g(x). Similarly, it satisfies a quotient rule, : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Frank Hilton Jackson
The Reverend Frank Hilton Jackson (16 August 1870, Hull, England – 27 April 1960) was an English clergyman and mathematician who worked on basic hypergeometric series. He introduced several ''q''-analogs such as the Jackson–Bessel functions, the Jackson- Hahn-Cigler ''q''-addition, the Jackson derivative, and the Jackson integral In q-analog theory, the Jackson integral series in the theory of special functions that expresses the operation inverse to q-differentiation. The Jackson integral was introduced by Frank Hilton Jackson. For methods of numerical evaluation, see an .... Further reading *Ernst, T. (2012). A Comprehensive Treatment of q-Calculus. Springer Science & Business Media. *Gasper, G., Rahman, M.(2004). Basic Hypergeometric Series. Cambridge University Press. References * Selected papers * Jackson, F. H. (1917). The q-integral analogous to Borel's integral. Messenger Math, 47, 57–64. * Jackson, F. H. (1921). Summation of q-hypergeometric series. Messe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Stieltjes Integral
In mathematics, the Riemann–Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of this integral was first published in 1894 by Stieltjes. It serves as an instructive and useful precursor of the Lebesgue integral, and an invaluable tool in unifying equivalent forms of statistical theorems that apply to discrete and continuous probability. Formal definition The Riemann–Stieltjes integral of a real-valued function f of a real variable on the interval ,b/math> with respect to another real-to-real function g is denoted by :\int_^b f(x) \, \mathrmg(x). Its definition uses a sequence of partitions P of the interval ,b/math> :P=\. The integral, then, is defined to be the limit, as the mesh (the length of the longest subinterval) of the partitions approaches 0 , of the approximating sum :S(P,f,g) = \sum_^ f(c_i)\left g(x_) - g(x_i) \right/math> where c_i is in the i-th subinterval _i;x_/math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antiderivative
In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically as . The process of solving for antiderivatives is called antidifferentiation (or indefinite integration), and its opposite operation is called ''differentiation'', which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as and . Antiderivatives are related to definite integrals through the second fundamental theorem of calculus: the definite integral of a function over a closed interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ... where the function is Riemann integrable is eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Integral
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration. Overview Let be a non-negative real-valued function on the interval , and let be the region of the plane under the graph of the function and above the interval . See the figure on the top right. This region can be expressed in set-builder notation as S = \left \. We are interested in measuring the area of . Once we have measured it, we will denote the area in the usual way by \int_a^b f(x)\,dx. The basic idea of the Riemann integral is to use very simple approximations for the area of . By taking better and be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Mathematical Physics
The ''Journal of Mathematical Physics'' is a peer-reviewed journal published monthly by the American Institute of Physics devoted to the publication of papers in mathematical physics. The journal was first published bimonthly beginning in January 1960; it became a monthly publication in 1963. The current editor is Jan Philip Solovej from University of Copenhagen The University of Copenhagen ( da, Københavns Universitet, KU) is a prestigious public university, public research university in Copenhagen, Copenhagen, Denmark. Founded in 1479, the University of Copenhagen is the second-oldest university in .... Its 2018 Impact Factor is 1.355 Abstracting and indexing This journal is indexed by the following services:Wellesley College Library
2013.


References


External links



[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Calculus
Quantum calculus, sometimes called calculus without limits, is equivalent to traditional infinitesimal calculus without the notion of limits. It defines "q-calculus" and "h-calculus", where h ostensibly stands for Planck's constant while ''q'' stands for quantum. The two parameters are related by the formula :q = e^ = e^ where \hbar = \frac is the reduced Planck constant. Differentiation In the q-calculus and h-calculus, differentials of functions are defined as :d_q(f(x)) = f(qx) - f(x) and :d_h(f(x)) = f(x + h) - f(x) respectively. Derivatives of functions are then defined as fractions by the q-derivative :D_q(f(x)) = \frac = \frac and by :D_h(f(x)) = \frac = \frac In the limit, as h goes to 0, or equivalently as q goes to 1, these expressions take on the form of the derivative of classical calculus. Integration q-integral A function ''F''(''x'') is a q-antiderivative of ''f''(''x'') if ''D''q''F''(''x'') = ''f''(''x''). The q-antiderivative (or q-integral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Functions
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by consensus, and thus lacks a general formal definition, but the List of mathematical functions contains functions that are commonly accepted as special. Tables of special functions Many special functions appear as solutions of differential equations or integrals of elementary functions. Therefore, tables of integrals usually include descriptions of special functions, and tables of special functions include most important integrals; at least, the integral representation of special functions. Because symmetries of differential equations are essential to both physics and mathematics, the theory of special functions is closely related to the theory of Lie groups and Lie algebras, as well as certain topics in mathematical physics. Symbolic c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]