Introduction To 3-Manifolds
   HOME
*





Introduction To 3-Manifolds
''Introduction to 3-Manifolds'' is a mathematics book on low-dimensional topology. It was written by Jennifer Schultens and published by the American Mathematical Society in 2014 as volume 151 of their book series Graduate Studies in Mathematics. Topics A manifold is a space whose topology, near any of its points, is the same as the topology near a point of a Euclidean space; however, its global structure may be non-Euclidean. Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ideas of this area, but does not include detailed proofs for many of the results that it states, in many cases because these proofs are long and technical. The book has seven chapters. The first two are introductory, pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Introduction To 3-Manifolds
''Introduction to 3-Manifolds'' is a mathematics book on low-dimensional topology. It was written by Jennifer Schultens and published by the American Mathematical Society in 2014 as volume 151 of their book series Graduate Studies in Mathematics. Topics A manifold is a space whose topology, near any of its points, is the same as the topology near a point of a Euclidean space; however, its global structure may be non-Euclidean. Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ideas of this area, but does not include detailed proofs for many of the results that it states, in many cases because these proofs are long and technical. The book has seven chapters. The first two are introductory, pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schoenflies Problem
In mathematics, the Schoenflies problem or Schoenflies theorem, of geometric topology is a sharpening of the Jordan curve theorem by Arthur Schoenflies. For Jordan curves in the plane it is often referred to as the Jordan–Schoenflies theorem. Original formulation The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane. An alternative statement is that if C \subset \mathbb R^2 is a simple closed curve, then there is a homeomorphism f : \mathbb R^2 \to \mathbb R^2 such that f(C) is the unit circle in the plane. Elementary proofs can be found in , , and . The result can first be proved for polygons when the homeomorphism can be taken to be piecewise linear and the identity map off some compact set; the case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Decomposition (3-manifold)
In mathematics, the prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) finite collection of prime 3-manifolds. A manifold is ''prime'' if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension. This condition is necessary since for any manifold M of dimension n it is true that M = M \# S^n. (where M \# S^n means the connected sum of M and S^n). If P is a prime 3-manifold then either it is S^2 \times S^1 or the non-orientable S^2 bundle over S^1, or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S^2 over S^1. The prime decomposition holds also for non-orientable 3-manifolds, but the uniqueness statement must be modified slightly: every compact, non-orientable 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equation
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Surface
In mathematics, a normal surface is a surface inside a triangulated 3-manifold that intersects each tetrahedron so that each component of intersection is a ''triangle'' or a ''quad'' (see figure). A triangle cuts off a vertex of the tetrahedron while a quad separates pairs of vertices. A normal surface may have many components of intersection, called normal disks, with one tetrahedron, but no two normal disks can be quads that separate different pairs of vertices since that would lead to the surface self-intersecting. Dually, a normal surface can be considered to be a surface that intersects each handle of a given handle structure on the 3-manifold in a prescribed manner similar to the above. The concept of normal surface can be generalized to arbitrary polyhedra. There are also related notions of almost normal surface and spun normal surface. The concept of normal surface is due to Hellmuth Kneser, who utilized it in his proof of the prime decomposition theorem for 3-mani ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Knot Complement
In mathematics, the knot complement of a tame knot ''K'' is the space where the knot is not. If a knot is embedded in the 3-sphere, then the complement is the 3-sphere minus the space near the knot. To make this precise, suppose that ''K'' is a knot in a three-manifold ''M'' (most often, ''M'' is the 3-sphere). Let ''N'' be a tubular neighborhood of ''K''; so ''N'' is a solid torus. The knot complement is then the complement of ''N'', :X_K = M - \mbox(N). The knot complement ''XK'' is a compact 3-manifold; the boundary of ''XK'' and the boundary of the neighborhood ''N'' are homeomorphic to a two-torus. Sometimes the ambient manifold ''M'' is understood to be 3-sphere. Context is needed to determine the usage. There are analogous definitions of link complement. Many knot invariants, such as the knot group, are really invariants of the complement of the knot. When the ambient space is the three-sphere no information is lost: the Gordon–Luecke theorem states that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thin Position
Thin may refer to: * a lean body shape. ''(See also: emaciation, underweight)'' * ''Thin'' (film), a 2006 HBO documentary about eating disorders * Paper Thin (other), referring to multiple songs * Thin (web server), a Ruby web-server based on Mongrel * Thin (name) See also * * * Thin client, a computer in a client-server architecture network. * Thin film, a material layer of about 1 μm thickness. * Thin-film deposition, any technique for depositing a thin film of material onto a substrate or onto previously deposited layers * Thin film memory, high-speed variation of core memory developed by Sperry Rand in a government-funded research project * Thin-film optics, the branch of optics that deals with very thin structured layers of different materials * Thin layer chromatography (TLC), a chromatography technique used in chemistry to separate chemical compounds * Thin layers (oceanography), congregations of phytoplankton and zooplankton in the water column * Thin le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knot Invariant
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a ''knot invariant'' is a rule that assigns to any knot a quantity such that if and are equivalent then ."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification,Purcell, Jessica (2020). ''Hyperbolic Knot Theory'', p.7. American Mathematical Society. "A ''knot invariant'' is a function from the set of knots to some other set whose value depends only on the equiva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Theory
In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, Unknot, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seifert Fiber Space
A Seifert fiber space is a 3-manifold together with a decomposition as a disjoint union of circles. In other words, it is a S^1-bundle (circle bundle) over a 2-dimensional orbifold. Many 3-manifolds are Seifert fiber spaces, and they account for all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture. Definition A Seifert manifold is a closed 3-manifold together with a decomposition into a disjoint union of circles (called fibers) such that each fiber has a tubular neighborhood that forms a standard fibered torus. A standard fibered torus corresponding to a pair of coprime integers (a,b) with a>0 is the surface bundle of the automorphism of a disk given by rotation by an angle of 2\pi b/a (with the natural fibering by circles). If a=1 the middle fiber is called ordinary, while if a>1 the middle fiber is called exceptional. A compact Seifert fiber space has only a finite number of exceptional fibers. The set of fibers forms a 2-dimensio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




JSJ Decomposition
In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem: :Irreducible orientable closed (i.e., compact and without boundary) 3-manifolds have a unique (up to isotopy) minimal collection of disjointly embedded incompressible tori such that each component of the 3-manifold obtained by cutting along the tori is either atoroidal or Seifert-fibered. The acronym JSJ is for William Jaco, Peter Shalen, and Klaus Johannson. The first two worked together, and the third worked independently. The characteristic submanifold An alternative version of the JSJ decomposition states: :A closed irreducible orientable 3-manifold ''M'' has a submanifold Σ that is a Seifert manifold (possibly disconnected and with boundary) whose complement is atoroidal (and possibly disconnected). The submanifold Σ with the smallest number of boundary tori is called the characteristic submanifold of ''M''; it is unique (up to iso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]