Intersection Non-emptiness Problem
   HOME
*





Intersection Non-emptiness Problem
The intersection non-emptiness problem, also known as finite automaton intersection problem or the non-emptiness of intersection problem, is a PSPACE-complete decision problem from the field of automata theory. Definitions A non-emptiness decision problem is defined as follows. Given an automaton as input, the goal is to determine whether or not the automaton's language is non-empty. In other words, the goal is to determine if there exists a string that is accepted by the automaton. Non-emptiness problems have been studied in the field of automata theory for many years. Several common non-emptiness problems have been shown to be complete for complexity classes ranging from Deterministic Logspace up to PSPACE. The intersection non-emptiness decision problem is concerned with whether the intersection of given languages is non-empty. In particular, the intersection non-emptiness problem is defined as follows. Given a list of deterministic finite automata as input, the goal i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PSPACE-complete
In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE. Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games. Theory A problem is defined to be PSPACE-complete if it can be solved using a polynomial amount of memory (it belongs to PSPACE) and every problem in PSPACE can be tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dana Scott
Dana Stewart Scott (born October 11, 1932) is an American logician who is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University; he is now retired and lives in Berkeley, California. His work on automata theory earned him the Turing Award in 1976, while his collaborative work with Christopher Strachey in the 1970s laid the foundations of modern approaches to the semantics of programming languages. He has worked also on modal logic, topology, and category theory. Early career He received his B.A. in Mathematics from the University of California, Berkeley, in 1954. He wrote his Ph.D. thesis on ''Convergent Sequences of Complete Theories'' under the supervision of Alonzo Church while at Princeton, and defended his thesis in 1958. Solomon Feferman (2005) writes of this period: After completing his Ph.D. studies, he moved to the University of Chicago, working as an instructor there until 1960. In 1959, he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of PSPACE-complete Problems
Here are some of the more commonly known problems that are PSPACE-complete when expressed as decision problems. This list is in no way comprehensive. Games and puzzles Generalized versions of: * Amazons * Atomix * Checkers * Dyson Telescope Game * Cross Purposes * Geography * Two-player game version of Instant Insanity * Ko-free Go * Ladder capturing in GoGo ladders are PSPACE-complete
* * Hex * Konane *



Intersection Non-Emptiness Problem
The intersection non-emptiness problem, also known as finite automaton intersection problem or the non-emptiness of intersection problem, is a PSPACE-complete decision problem from the field of automata theory. Definitions A non-emptiness decision problem is defined as follows. Given an automaton as input, the goal is to determine whether or not the automaton's language is non-empty. In other words, the goal is to determine if there exists a string that is accepted by the automaton. Non-emptiness problems have been studied in the field of automata theory for many years. Several common non-emptiness problems have been shown to be complete for complexity classes ranging from Deterministic Logspace up to PSPACE. The intersection non-emptiness decision problem is concerned with whether the intersection of given languages is non-empty. In particular, the intersection non-emptiness problem is defined as follows. Given a list of deterministic finite automata as input, the goal i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dexter Kozen
Dexter Campbell Kozen (born December 20, 1951) is an American theoretical computer scientist. He is Joseph Newton Pew, Jr. Professor in Engineering at Cornell University. He received his B.A. from Dartmouth College in 1974 and his PhD in computer science in 1977 from Cornell University, where he was advised by Juris Hartmanis. He advised numerous Ph.D. students. He is a Fellow of the Association for Computing Machinery, a Guggenheim Fellow, and has received an Outstanding Innovation Award from IBM Corporation. He has also been named Faculty of the Year by the Association of Computer Science Undergraduates at Cornell. Dexter Kozen was one of the first professors to receive the honor of a professorship at The Radboud Excellence Initiative at Radboud University Nijmegen in the Netherlands. He is known for his work at the intersection of logic and complexity. He is one of the fathers of dynamic logic and developed the version of the modal μ-calculus most used today. Moreover, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Depth-first Search
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking. Extra memory, usually a stack, is needed to keep track of the nodes discovered so far along a specified branch which helps in backtracking of the graph. A version of depth-first search was investigated in the 19th century by French mathematician Charles Pierre Trémaux as a strategy for solving mazes. Properties The time and space analysis of DFS differs according to its application area. In theoretical computer science, DFS is typically used to traverse an entire graph, and takes time where , V, is the number of vertices and , E, the number of edges. This is linear in the size of the graph. In these applications it also uses space O(, V, ) in the worst case to store the stack of vertices on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Breadth-first Search
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level. Extra memory, usually a queue, is needed to keep track of the child nodes that were encountered but not yet explored. For example, in a chess endgame a chess engine may build the game tree from the current position by applying all possible moves, and use breadth-first search to find a win position for white. Implicit trees (such as game trees or other problem-solving trees) may be of infinite size; breadth-first search is guaranteed to find a solution node if one exists. In contrast, (plain) depth-first search, which explores the node branch as far as possible before backtracking and expanding other nodes, may get lost in an infinite branch and never make it to the solution node. Iterative deepening depth-first search avoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Product Automaton
Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Product (mathematics) Algebra * Direct product Set theory * Cartesian product of sets Group theory * Direct product of groups * Semidirect product * Product of group subsets * Wreath product * Free product * Zappa–Szép product (or knit product), a generalization of the direct and semidirect products Ring theory * Product of rings * Ideal operations, for product of ideals Linear algebra * Scalar multiplication * Matrix multiplication * Inner product, on an inner product space * Exterior product or wedge product * Multiplication of vectors: ** Dot product ** Cross product ** Seven-dimensional cross product ** Triple product, in vector calculus * Tensor product Topology * Product topology Algebraic topology * Cap product * Cup produc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael O
Michael may refer to: People * Michael (given name), a given name * Michael (surname), including a list of people with the surname Michael Given name "Michael" * Michael (archangel), ''first'' of God's archangels in the Jewish, Christian and Islamic religions * Michael (bishop elect), English 13th-century Bishop of Hereford elect * Michael (Khoroshy) (1885–1977), cleric of the Ukrainian Orthodox Church of Canada * Michael Donnellan (1915–1985), Irish-born London fashion designer, often referred to simply as "Michael" * Michael (footballer, born 1982), Brazilian footballer * Michael (footballer, born 1983), Brazilian footballer * Michael (footballer, born 1993), Brazilian footballer * Michael (footballer, born February 1996), Brazilian footballer * Michael (footballer, born March 1996), Brazilian footballer * Michael (footballer, born 1999), Brazilian footballer Rulers =Byzantine emperors= *Michael I Rangabe (d. 844), married the daughter of Emperor Nikephoro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automata Theory
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science. The word ''automata'' comes from the Greek word αὐτόματος, which means "self-acting, self-willed, self-moving". An automaton (automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a Finite Automaton (FA) or Finite-State Machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function, which takes the previous state and current input symbol as its arguments. Automata theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''- tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]