HOME
*





Intersection Cohomology
In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years. Intersection cohomology was used to prove the Kazhdan–Lusztig conjectures and the Riemann–Hilbert correspondence. It is closely related to ''L''2 cohomology. Goresky–MacPherson approach The homology groups of a compact, oriented, connected, ''n''-dimensional manifold ''X'' have a fundamental property called Poincaré duality: there is a perfect pairing : H_i(X,\Q) \times H_(X,\Q) \to H_0(X,\Q) \cong \Q. Classically—going back, for instance, to Henri Poincaré—this duality was understood in terms of intersection theory. An element of :H_j(X) is represented by a ''j''-dimensional cycle. If an ''i''-dimensional and an (n-i)-dimensional cycle are in general position, then their intersection is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a '' topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intersection Theory
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. Topological intersection form For a connected oriented manifold of dimension the intersection form is defined on the -th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in . Stated precisely, there is a bilinear form :\lambda_M \colon H^n(M,\partial M) \times H^n(M,\partial M)\to \mathbf given by :\lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free {{no footnotes, date=December 2015 In mathematics, a square-free element is an element ''r'' of a unique factorization domain ''R'' that is not divisible by a non-trivial square. This means that every ''s'' such that s^2\mid r is a unit of ''R''. A ... in .) It is always understood that the curve is really sitting in the projective plane, with the point being the uniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypercohomology
In homological algebra, the hyperhomology or hypercohomology (\mathbb_*(-), \mathbb^*(-)) is a generalization of (co)homology functors which takes as input not objects in an abelian category \mathcal but instead chain complexes of objects, so objects in \text(\mathcal). It is a sort of cross between the derived functor cohomology of an object and the homology of a chain complex since hypercohomology corresponds to the derived global sections functor \mathbf^*\Gamma(-). Hyperhomology is no longer used much: since about 1970 it has been largely replaced by the roughly equivalent concept of a derived functor between derived categories. Motivation One of the motivations for hypercohomology comes from the fact that there isn't an obvious generalization of cohomological long exact sequences associated to short exact sequences0 \to M' \to M \to M'' \to 0i.e. there is an associated long exact sequence0 \to H^0(M') \to H^0(M) \to H^0(M'')\to H^1(M') \to \cdots It turns out hypercoho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constructible Sheaf
In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space ''X'', such that ''X'' is the union of a finite number of locally closed subsets on each of which the sheaf is a locally constant sheaf. It has its origins in algebraic geometry, where in étale cohomology constructible sheaves are defined in a similar way . For the derived category of constructible sheaves, see a section in ℓ-adic sheaf. The finiteness theorem in étale cohomology states that the higher direct images of a constructible sheaf are constructible. Definition of étale constructible sheaves on a scheme ''X'' Here we use the definition of constructible étale sheaves from the book by Freitag and Kiehl referenced below. In what follows in this subsection, all sheaves \mathcal on schemes X are étale sheaves unless otherwise noted. A sheaf \mathcal is called constructible if X can be written as a finite union of locally closed subschemes i_Y:Y \to X such that for each subsc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Resolution Of Singularities
In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety ''V'' has a resolution, a non-singular variety ''W'' with a Proper morphism, proper birational map ''W''→''V''. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic ''p'' it is an open problem in dimensions at least 4. Definitions Originally the problem of resolution of singularities was to find a nonsingular model for the function field of a variety ''X'', in other words a complete non-singular variety ''X′'' with the same function field. In practice it is more convenient to ask for a different condition as follows: a variety ''X'' has a resolution of singularities if we can find a non-singular variety ''X′'' and a Proper morphism, proper birational map from ''X′'' to ''X''. The condition that the map is proper is needed to exclude trivial solutions, such as taking ''X&prime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, * a 0-dimensional simplex is a point, * a 1-dimensional simplex is a line segment, * a 2-dimensional simplex is a triangle, * a 3-dimensional simplex is a tetrahedron, and * a 4-dimensional simplex is a 5-cell. Specifically, a ''k''-simplex is a ''k''-dimensional polytope which is the convex hull of its ''k'' + 1 vertices. More formally, suppose the ''k'' + 1 points u_0, \dots, u_k \in \mathbb^ are affinely independent, which means u_1 - u_0,\dots, u_k-u_0 are linearly independent. Then, the simplex determined by them is the set of points : C = \left\ This representation in terms of weighted vertices is known as the barycentric coordinate system. A regular simplex is a simplex that is also a regular poly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floor And Ceiling Functions
In mathematics and computer science, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, , , , and . Historically, the floor of has been–and still is–called the integral part or integer part of , often denoted (as well as a variety of other notations). Some authors may define the integral part as if is nonnegative, and otherwise: for example, and . The operation of truncation generalizes this to a specified number of digits: truncation to zero significant digits is the same as the integer part. For an integer, . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Carl Friedrich Gauss introduced the square bracket notation in hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Middle Perversity
In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years. Intersection cohomology was used to prove the Kazhdan–Lusztig conjectures and the Riemann–Hilbert correspondence. It is closely related to ''L''2 cohomology. Goresky–MacPherson approach The homology groups of a compact, oriented, connected, ''n''-dimensional manifold ''X'' have a fundamental property called Poincaré duality: there is a perfect pairing : H_i(X,\Q) \times H_(X,\Q) \to H_0(X,\Q) \cong \Q. Classically—going back, for instance, to Henri Poincaré—this duality was understood in terms of intersection theory. An element of :H_j(X) is represented by a ''j''-dimensional cycle. If an ''i''-dimensional and an (n-i)-dimensional cycle are in general position, then their intersection is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplicial Complex
In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial from an abstract simplicial complex, the former is often called a geometric simplicial complex.'', Section 4.3'' Definitions A simplicial complex \mathcal is a set of simplices that satisfies the following conditions: :1. Every face of a simplex from \mathcal is also in \mathcal. :2. The non-empty intersection of any two simplices \sigma_1, \sigma_2 \in \mathcal is a face of both \sigma_1 and \sigma_2. See also the definition of an abstract simplicial complex, which loosely speaking is a simplicial complex without an associated geometry. A simplicial ''k''-c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paracompact Space
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by . Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff. Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact. Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. Ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]