Interpretation Function
   HOME
*





Interpretation Function
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces. The term universal algebra is used for structures with no relation symbols. Model theory has a different scope that encompasses more arbitrary theories, including foundational structures such as models of set theory. From the model-theoretic point of view, structures are the objects used to define the semantics of first-order logic. For a given theory in model theory, a structure is called a model if it satisfies the defining axioms of that theory, although it is sometimes disambiguated as a ''semantic model'' when one discusses the notion in the more general setting of mathematical models. Logicians sometimes refer to structures as " interpretations", whereas the term "interpretation" generall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Basic idea In universal algebra, an algebra (or algebraic structure) is a set ''A'' together with a collection of operations on ''A''. An ''n''- ary operation on ''A'' is a function that takes ''n'' elements of ''A'' and returns a single element of ''A''. Thus, a 0-ary operation (or ''nullary operation'') can be represented simply as an element of ''A'', or a '' constant'', often denoted by a letter like ''a''. A 1-ary operation (or ''unary operation'') is simply a function from ''A'' to ''A'', often denoted by a symbol placed in front of its argument, like ~''x''. A 2-ary operation (or ''binary operation'') is often denoted by a symbol placed between its argum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Model
A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences (such as economics, psychology, sociology, political science). The use of mathematical models to solve problems in business or military operations is a large part of the field of operations research. Mathematical models are also used in music, linguistics, and philosophy (for example, intensively in analytic philosophy). A model may help to explain a system and to study the effects of different components, and to make predictions about behavior. Elements of a mathematical model Mathematical models can take many forms, including dynamical systems, statisti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arity
Arity () is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, and computer science. In mathematics, arity may also be named ''rank'', but this word can have many other meanings in mathematics. In logic and philosophy, it is also called adicity and degree. In linguistics, it is usually named valency. Examples The term "arity" is rarely employed in everyday usage. For example, rather than saying "the arity of the addition operation is 2" or "addition is an operation of arity 2" one usually says "addition is a binary operation". In general, the naming of functions or operators with a given arity follows a convention similar to the one used for ''n''-based numeral systems such as binary and hexadecimal. One combines a Latin prefix with the -ary ending; for example: * A nullary function takes no arguments. ** Example: f()=2 * A unary function takes one argument. ** Example: f(x)=2x * A binary function takes two arguments. ** Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Logic
A free logic is a logic with fewer existential presuppositions than classical logic. Free logics may allow for terms that do not denote any object. Free logics may also allow models that have an empty domain. A free logic with the latter property is an inclusive logic. Explanation In classical logic there are theorems that clearly presuppose that there is something in the domain of discourse. Consider the following classically valid theorems. :1. \forall xA \Rightarrow \exists xA :2. \forall x \forall rA(x) \Rightarrow \forall rA(r) :3. \forall rA(r) \Rightarrow \exists xA(x) A valid scheme in the theory of equality which exhibits the same feature is :4. \forall x(Fx \rightarrow Gx) \land \exists xFx \rightarrow \exists x(Fx \land Gx) Informally, if F is '=y', G is 'is Pegasus', and we substitute 'Pegasus' for y, then (4) appears to allow us to infer from 'everything identical with Pegasus is Pegasus' that something is identical with Pegasus. The problem comes from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Domain
In first-order logic the empty domain is the empty set having no members. In traditional and classical logic domains are restrictedly non-empty in order that certain theorems be valid. Interpretations with an empty domain are shown to be a trivial case by a convention originating at least in 1927 with Bernays and Schönfinkel (though possibly earlier) but oft-attributed to Quine 1951. The convention is to assign any formula beginning with a universal quantifier the value ''truth'' while any formula beginning with an existential quantifier is assigned the value ''falsehood''. This follows from the idea that existentially quantified statements have existential import (i.e. they imply the existence of something) while universally quantified statements do not. This interpretation reportedly stems from George Boole in the late 19th century but this is debatable. In modern model theory, it follows immediately for the truth conditions for quantified sentences: *A\models\exists x\phi(x) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of Discourse
In the formal sciences, the domain of discourse, also called the universe of discourse, universal set, or simply universe, is the set of entities over which certain variables of interest in some formal treatment may range. Overview The domain of discourse is usually identified in the preliminaries, so that there is no need in the further treatment to specify each time the range of the relevant variables. Many logicians distinguish, sometimes only tacitly, between the ''domain of a science'' and the ''universe of discourse of a formalization of the science''.José Miguel Sagüillo, Domains of sciences, universe of discourse, and omega arguments, History and philosophy of logic, vol. 20 (1999), pp. 267–280. Examples For example, in an interpretation of first-order logic, the domain of discourse is the set of individuals over which the quantifiers range. A proposition such as is ambiguous, if no domain of discourse has been identified. In one interpretation, the domain of di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple , where ''S''func and ''S''rel are disjoint sets not containing any other basic logical symbols, called respectively * ''function symbols'' (examples: +, ×, 0, 1), * ''relation symbols'' or ''predicates'' (examples: ≤, ∈), * ''constant symbols'' (examples: 0, 1), and a function ar: ''S''func \cup ''S''rel → \mathbb N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called ''n''-ary if its arity is ''n''. Some authors define a nullary (0-ary) function symbol as ''constant s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Relational Model
The relational model (RM) is an approach to managing data using a Structure (mathematical logic), structure and language consistent with first-order logic, first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relation (database), relations. A database organized in terms of the relational model is a relational database. The purpose of the relational model is to provide a Declarative programming, declarative method for specifying data and queries: users directly state what information the database contains and what information they want from it, and let the database management system software take care of describing data structures for storing the data and retrieval procedures for answering queries. Most relational databases use the SQL data definition and query language; these systems implement what can be regarded as an engineering approximation to the relational model. A ''t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Database
In computing, a database is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spans formal techniques and practical considerations, including data modeling, efficient data representation and storage, query languages, security and privacy of sensitive data, and distributed computing issues, including supporting concurrent access and fault tolerance. A database management system (DBMS) is the software that interacts with end users, applications, and the database itself to capture and analyze the data. The DBMS software additionally encompasses the core facilities provided to administer the database. The sum total of the database, the DBMS and the associated applications can be referred to as a database system. Often the term "database" is also used loosely to refer to any of the DBMS, the database system or an appli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]