International Vocabulary Of Metrology
   HOME
*





International Vocabulary Of Metrology
The Joint Committee for Guides in Metrology (JCGM) is an organization in Sèvres that prepared the "Guide to the Expression of Uncertainty in Measurement" (GUM) and the "International Vocabulary of Metrology" (VIM). The JCGM assumed responsibility for these two documents from the ISO Technical Advisory Group 4 (TAG4). Partner organizations Partner organizations below send representatives into the JCGM: * International Bureau of Weights and Measures (BIPM) * International Electrotechnical Commission (IEC) * International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) * International Organization for Standardization (ISO) * International Union of Pure and Applied Chemistry (IUPAC) * International Union of Pure and Applied Physics (IUPAP) * International Organization of Legal Metrology (OIML) * International Laboratory Accreditation Cooperation (ILAC) Working groups JCGM has two Working Groups. Working Group 1, "Expression of uncertainty in measurement", has the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sèvres
Sèvres (, ) is a commune in the southwestern suburbs of Paris, France. It is located from the centre of Paris, in the Hauts-de-Seine department, Île-de-France region. The commune, which had a population of 23,251 as of 2018, is known for its famous porcelain production at the ''Manufacture nationale de Sèvres'', which was also where the Treaty of Sèvres (1920) was signed. Geography Situation Sèvres is a commune in the western suburbs of Paris, to the southwest of the centre of Paris, with an eastern edge by the river Seine. The commune borders Île Seguin, an island in the Seine, in the commune of Boulogne-Billancourt, adjoining Sèvres. File:Map commune FR insee code 92072.png, Map of the commune File:Sèvres map.svg, View of the commune of Sèvres in red on the map of Paris and the "Petite Couronne" File:SEVRES - L'Embarcadaire.jpg, Banks of the Seine in the early 20th century. At that time, the river was an important transportation axis; river shuttles can be se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

BIPM
The International Bureau of Weights and Measures (french: Bureau international des poids et mesures, BIPM) is an intergovernmental organisation, through which its 59 member-states act together on measurement standards in four areas: chemistry, ionising radiation, physical metrology, and coordinated universal time. It is based in Saint-Cloud, Paris, France. The organisation has been referred to as IBWM (from its name in English) in older literature. Structure The BIPM is supervised by the International Committee for Weights and Measures (french: Comité international des poids et mesures, CIPM), a committee of eighteen members that meet normally in two sessions per year, which is in turn overseen by the General Conference on Weights and Measures (french: Conférence générale des poids et mesures, CGPM) that meets in Paris usually once every four years, consisting of delegates of the governments of the Member States and observers from the Associates of the CGPM. These organs ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1997 Establishments In France
File:1997 Events Collage.png, From left, clockwise: The movie set of ''Titanic'', the highest-grossing movie in history at the time; ''Harry Potter and the Philosopher's Stone'', is published; Comet Hale-Bopp passes by Earth and becomes one of the most observed comets of the 20th century; Golden Bauhinia Square, where sovereignty of Hong Kong is handed over from the United Kingdom to the People's Republic of China; the 1997 Central European flood kills 114 people in the Czech Republic, Poland, and Germany; Korean Air Flight 801 crashes during heavy rain on Guam, killing 229; Mars Pathfinder and Sojourner land on Mars; flowers left outside Kensington Palace following the death of Diana, Princess of Wales, in a car crash in Paris., 300x300px, thumb rect 0 0 200 200 Titanic (1997 film) rect 200 0 400 200 Harry Potter rect 400 0 600 200 Comet Hale-Bopp rect 0 200 300 400 Death of Diana, Princess of Wales rect 300 200 600 400 Handover of Hong Kong rect 0 400 200 600 Mars Pathfinder re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metrology
Metrology is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in France when a length standard taken from a natural source was proposed. This led to the creation of the decimal-based metric system in 1795, establishing a set of standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure conformity between the countries, the Bureau International des Poids et Mesures (BIPM) was established by the Metre Convention. This has evolved into the International System of Units (SI) as a result of a resolution at the 11th General Conference on Weights and Measures (CGPM) in 1960. Metrology is divided into three basic overlapping activities: * The definition of units of measurement * The realisation of these units of measurement in practice * Traceabi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Measurement
The earliest recorded systems of weights and measures originate in the 3rd or 4th millennium BC. Even the very earliest civilizations needed measurement for purposes of agriculture, construction and trade. Early standard units might only have applied to a single community or small region, with every area developing its own standards for lengths, areas, volumes and masses. Often such systems were closely tied to one field of use, so that volume measures used, for example, for dry grains were unrelated to those for liquids, with neither bearing any particular relationship to units of length used for measuring cloth or land. With development of manufacturing technologies, and the growing importance of trade between communities and ultimately across the Earth, standardized weights and measures became critical. Starting in the 18th century, modernized, simplified and uniform systems of weights and measures were developed, with the fundamental units defined by ever more precise methods ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimensional Analysis
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measure (such as miles vs. kilometres, or pounds vs. kilograms) and tracking these dimensions as calculations or comparisons are performed. The conversion of units from one dimensional unit to another is often easier within the metric or the SI than in others, due to the regular 10-base in all units. ''Commensurable'' physical quantities are of the same kind and have the same dimension, and can be directly compared to each other, even if they are expressed in differing units of measure, e.g. yards and metres, pounds (mass) and kilograms, seconds and years. ''Incommensurable'' physical quantities are of different kinds and have different dimensions, and can not be directly compared to each other, no matter what units they are expressed in, e.g. metres and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Long And Short Scales
The long and short scales are two of several naming systems for integer powers of ten which use some of the same terms for different magnitudes. For whole numbers smaller than 1,000,000,000 (109), such as one thousand or one million, the two scales are identical. For larger numbers, starting with 109, the two systems differ. For identical names, the long scale proceeds by powers of one million, whereas the short scale proceeds by powers of one thousand. For example, in the short scale, "one billion" means one thousand millions (1,000,000,000), whereas in the long scale, it means one million millions (1,000,000,000,000). For interleaved values, the long scale system employs additional terms, typically substituting the word ending -ion for -iard. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, such as Chinese, Japanese or Korean numerals, and the Indian numbering system. Much ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Of Magnitude
An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic distributions are common in nature and considering the order of magnitude of values sampled from such a distribution can be more intuitive. When the reference value is 10, the order of magnitude can be understood as the number of digits in the base-10 representation of the value. Similarly, if the reference value is one of some powers of 2, since computers store data in a binary format, the magnitude can be understood in terms of the amount of computer memory needed to store that value. Differences in order of magnitude can be measured on a base-10 logarithmic scale in “decades” (i.e., factors of ten). Examples of numbers of different magnitudes can be found at Orders of magnitude (numbers). Definition Generally, the order of magnitude ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SI Derived Unit
SI derived units are units of measurement derived from the seven base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem). Some are dimensionless, as when the units cancel out in ratios of like quantities. The SI has special names for 22 of these derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m2), the SI derived unit of area; and the kilogram per cubic metre (kg/m3 or kg⋅m−3), the SI derived unit of density. The names of SI derived units, when written in full, are always in lowercase. However, the symbols for units named after persons are written with an uppercase initial letter. For example, the symbol for hertz is "Hz", while the symbol for metre is "m". Special names The International System of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SI Base Unit
The SI base units are the standard units of measurement defined by the International System of Units (SI) for the seven base quantities of what is now known as the International System of Quantities: they are notably a basic set from which all other SI units can be derived. The units and their physical quantities are the second for time, the metre (sometimes spelled meter) for length or distance, the kilogram for mass, the ampere for electric current, the kelvin for thermodynamic temperature, the mole for amount of substance, and the candela for luminous intensity. The SI base units are a fundamental part of modern metrology, and thus part of the foundation of modern science and technology. The SI base units form a set of mutually independent dimensions as required by dimensional analysis commonly employed in science and technology. The names and symbols of SI base units are written in lowercase, except the symbols of those named after a person, which are written with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International System Of Units
The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. Established and maintained by the General Conference on Weights and Measures (CGPM), it is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International System Of Quantities
The International System of Quantities (ISQ) consists of the quantities used in physics and in modern science in general, starting with basic quantities such as length and mass, and the relationships between those quantities. This system underlies the International System of Units (SI) but does not itself determine the units of measurement used for the quantities. It is inherently incomplete because the number of quantities is potentially infinite. The system is formally described in a multi-part ISO standard ISO/IEC 80000, first completed in 2009 but subsequently revised and expanded. Base quantities The base quantities of a given system of physical quantities is a subset of those quantities, where no base quantity can be expressed in terms of the others, but where every quantity in the system can be expressed in terms of the base quantities. Within this constraint, the set of base quantities is chosen by convention. The ISQ defines seven base quantities. The symbols fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]