Infinitesimal Character
   HOME
*





Infinitesimal Character
In mathematics, the infinitesimal character of an irreducible representation ρ of a semisimple Lie group ''G'' on a vector space ''V'' is, roughly speaking, a mapping to scalars that encodes the process of first differentiating and then diagonalizing the representation. It therefore is a way of extracting something essential from the representation ρ by two successive linearizations. Formulation The infinitesimal character is the linear form on the center ''Z'' of the universal enveloping algebra of the Lie algebra of ''G'' that the representation induces. This construction relies on some extended version of Schur's lemma to show that any ''z'' in ''Z'' acts on ''V'' as a scalar, which by abuse of notation could be written ρ(''z''). In more classical language, ''z'' is a differential operator, constructed from the infinitesimal transformations which are induced on ''V'' by the Lie algebra of ''G''. The effect of Schur's lemma is to force all ''v'' in ''V'' to be simultaneous e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Representation
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W), with W \subset V closed under the action of \. Every finite-dimensional unitary representation on a Hilbert space V is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible. History Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field K of arbitrary characteristic, rather than a vector space over the field of real numbers or o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Group
In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals and homomorphisms, ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of Characteristic (algebra), characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable Lie algebra, solvable ideals; * the Radical of a Lie algebra, radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diagonalizing
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P and a diagonal matrix D such that or equivalently (Such D are not unique.) For a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation T = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, A is represented by Diagonalization is the process of finding the above P and Diagonalizable matrices and maps are especially easy for computations, once their eigenvalues and eigenvectors are known. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power, and the determi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Center Of A Group
In abstract algebra, the center of a group, , is the set of elements that commute with every element of . It is denoted , from German '' Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, . As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, , is isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial; i.e., consists only of the identity element. The elements of the center are sometimes called central. As a subgroup The center of ''G'' is always a subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If and are in , then so is , by associativity: for each ; i.e., is closed; # If is in , then so is as, for all in , commutes with : . Furthermore, the center of is always ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Enveloping Algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators. Because Casimir operators commute with all elements of a Lie algebra, they can be used to classify representations. The precise definition also allows the importation of Casimir operators into other areas of mathematics, specifically, those that have a differential algebra. They also play a central role in some recent developments in mathematics. In particular, their dual provides a commutative example of the objects studied in non-commutative geometry, the quantum groups. This dual can be shown, by the Gelfand–N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schur's Lemma
In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if ''M'' and ''N'' are two finite-dimensional irreducible representations of a group ''G'' and ''φ'' is a linear map from ''M'' to ''N'' that commutes with the action of the group, then either ''φ'' is invertible, or ''φ'' = 0. An important special case occurs when ''M'' = ''N'', i.e. ''φ'' is a self-map; in particular, any element of the center of a group must act as a scalar operator (a scalar multiple of the identity) on ''M''. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen. Representation theory of groups Representation theory is the study of homomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abuse Of Notation
In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition (while possibly minimizing errors and confusion at the same time). However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts. Time-dependent abuses of notation may occur when novel notations are introduced to a theory some time before the theory is first formalized; these may be formally corrected by solidifying and/or otherwise improving the theory. ''Abuse of notation'' should be contrasted with ''misuse'' of notation, which does not have the presentational benefits of the former and should be avoided (such as the misuse of constants of integration). A related concept is abuse of language or abuse of termin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative. Definition An order-m linear differential operator is a map A from a function space \mathcal_1 to another function space \mathcal_2 that can be written as: A = \sum_a_\alpha(x) D^\alpha\ , where \alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n) is a multi-index of non-negative integers, , \alpha, = \alpha_1 + \alpha_2 + \cdots + \alpha_n, and for each \alpha, a_\alpha(x) is a function on some open domain in ''n''-dimensional space. The operator D^\alpha is interpreted as D^\alp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinitesimal Transformation
In mathematics, an infinitesimal transformation is a limiting form of ''small'' transformation. For example one may talk about an infinitesimal rotation of a rigid body, in three-dimensional space. This is conventionally represented by a 3×3 skew-symmetric matrix ''A''. It is not the matrix of an actual rotation in space; but for small real values of a parameter ε the transformation :T=I+\varepsilon A is a small rotation, up to quantities of order ε2. History A comprehensive theory of infinitesimal transformations was first given by Sophus Lie. This was at the heart of his work, on what are now called Lie groups and their accompanying Lie algebras; and the identification of their role in geometry and especially the theory of differential equations. The properties of an abstract Lie algebra are exactly those definitive of infinitesimal transformations, just as the axioms of group theory embody symmetry. The term "Lie algebra" was introduced in 1934 by Hermann Weyl, for what ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvector
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harish-Chandra Isomorphism
In mathematics, the Harish-Chandra isomorphism, introduced by , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center \mathcal(U(\mathfrak)) of the universal enveloping algebra U(\mathfrak) of a reductive Lie algebra \mathfrak to the elements S(\mathfrak)^W of the symmetric algebra S(\mathfrak) of a Cartan subalgebra \mathfrak that are invariant under the Weyl group W. Introduction and setting Let \mathfrak be a semisimple Lie algebra, \mathfrak its Cartan subalgebra and \lambda, \mu \in \mathfrak^* be two elements of the weight space (where \mathfrak^* is the dual of \mathfrak) and assume that a set of positive roots \Phi_+ have been fixed. Let V_\lambda and V_\mu be highest weight modules with highest weights \lambda and \mu respectively. Central characters The \mathfrak-modules V_\lambda and V_\mu are representations of the universal enveloping algebra U(\mathfrak) and its center acts on the modules by scalar m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]