Infinite Alleles Model
   HOME
*





Infinite Alleles Model
The infinite alleles model is a mathematical model for calculating genetic mutations. The Japanese geneticist Motoo Kimura and American geneticist James F. Crow (1964) introduced the ''infinite alleles model'', an attempt to determine for a finite diploid population what proportion of loci would be homozygous. This was, in part, motivated by assertions by other geneticists that more than 50 percent of ''Drosophila'' loci were heterozygous, a claim they initially doubted. In order to answer this question they assumed first, that there were a large enough number of alleles so that any mutation would lead to a different allele (that is the probability of back mutation to the original allele would be low enough to be negligible); and second, that the mutations would result in a number of different outcomes from neutral to deleterious. They determined that in the neutral case, the probability that an individual would be homozygous, ''F'', was: :F = where ''u'' is the mutation rate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mutation
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA (such as pyrimidine dimers caused by exposure to ultraviolet radiation), which then may undergo error-prone repair (especially microhomology-mediated end joining), cause an error during other forms of repair, or cause an error during replication (translesion synthesis). Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements. Mutations may or may not produce detectable changes in the observable characteristics (phenotype) of an organism. Mutations play a part in both normal and abnormal biological processes including: evolution, cancer, and the development of the immune system, including junctional diversity. Mutation is the ultimate source o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heterosis
Heterosis, hybrid vigor, or outbreeding enhancement is the improved or increased function of any biological quality in a hybrid offspring. An offspring is heterotic if its traits are enhanced as a result of mixing the genetic contributions of its parents. These effects can be due to Mendelian or non-Mendelian inheritance. Definitions In proposing the term heterosis to replace the older term heterozygosis, G.H. Shull aimed to avoid limiting the term to the effects that can be explained by heterozygosity in Mendelian inheritance. Heterosis is often discussed as the opposite of inbreeding depression, although differences in these two concepts can be seen in evolutionary considerations such as the role of genetic variation or the effects of genetic drift in small populations on these concepts. Inbreeding depression occurs when related parents have children with traits that negatively influence their fitness largely due to homozygosity. In such instances, outcrossing shoul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Evolutionary Biology
Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, speciation) that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution is based on the theory that all species are related and they gradually change over time. In a population, the genetic variations affect the physical characteristics i.e. phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring. Some examples of evolution in species over many generations are the Peppered Moth and Flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology. The importance of studying Evolutionary biology is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite Sites Model
The Infinite sites model (ISM) is a mathematical model of molecular evolution first proposed by Motoo Kimura in 1969. Like other mutation models, the ISM provides a basis for understanding how mutation develops new alleles in DNA sequences. Using allele frequencies, it allows for the calculation of heterozygosity, or genetic diversity, in a finite population and for the estimation of genetic distances between populations of interest. The assumptions of the ISM are that (1) there are an infinite number of sites where mutations can occur, (2) every new mutation occurs at a novel site, and (3) there is no recombination. The term ‘site’ refers to a single nucleotide base pair. Because every new mutation has to occur at a novel site, there can be no homoplasy, or back-mutation to an allele that previously existed. All identical alleles are identical by descent. The four gamete rule can be applied to the data to ensure that they do not violate the model assumption of no recombinatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Genetics (journal)
''Genetics'' is a monthly scientific journal publishing investigations bearing on heredity, genetics, biochemistry and molecular biology. Genetics is published by the Genetics Society of America. It has a delayed open access policy, and makes articles available online without a subscription after 12 months have elapsed since first publication. Since 2010, it is published online-only.http://www.councilscienceeditors.org/wp-content/uploads/v36n1p14-15_17.pdf George Harrison Shull George Harrison Shull (April 15, 1874 – September 28, 1954) was an eminent American plant geneticist and the younger brother of botanical illustrator and plant breeder J. Marion Shull. He was born on a farm in Clark County, Ohio, graduated fr ... was the founding editor of ''Genetics'' in 1916. Editors-in-Chief References External linksOfficial website Genetics journals Delayed open access journals English-language journals Publications established in 1916 Online-only journals {{ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrophoresis
Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric field. Electrophoresis of positively charged particles (cations) is sometimes called cataphoresis, while electrophoresis of negatively charged particles (anions) is sometimes called anaphoresis. The electrokinetic phenomenon of electrophoresis was observed for the first time in 1807 by Russian professors Peter Ivanovich Strakhov and Ferdinand Frederic Reuss at Moscow University, who noticed that the application of a constant electric field caused clay particles dispersed in water to migrate. It is ultimately caused by the presence of a charged interface between the particle surface and the surrounding fluid. It is the basis for analytical techniques used in chemistry for separating molecules by size, charge, or binding affinity. Electropho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Richard Lewontin
Richard Charles Lewontin (March 29, 1929 – July 4, 2021) was an American evolutionary biologist, mathematician, geneticist, and social commentator. A leader in developing the mathematical basis of population genetics and evolutionary theory, he pioneered the application of techniques from molecular biology, such as gel electrophoresis, to questions of genetic variation and evolution. In a pair of seminal 1966 papers co-authored with J. L. Hubby in the journal ''Genetics'', Lewontin helped set the stage for the modern field of molecular evolution. In 1979 he and Stephen Jay Gould introduced the term "spandrel" into evolutionary theory. From 1973 to 1998, he held an endowed chair in zoology and biology at Harvard University, and from 2003 until his death in 2021 he was a research professor there. Lewontin opposed genetic determinism. Early life and education Lewontin was born in New York City, to parents descended from late 19th-century Ashkenazi Jewish immigrants. His father ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutral Theory Of Molecular Evolution
The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The theory applies only for evolution at the molecular level, and is compatible with phenotypic evolution being shaped by natural selection as postulated by Charles Darwin. The neutral theory allows for the possibility that most mutations are deleterious, but holds that because these are rapidly removed by natural selection, they do not make significant contributions to variation within and between species at the molecular level. A neutral mutation is one that does not affect an organism's ability to survive and reproduce. The neutral theory assumes that most mutations that are not deleterious are neutral rather than beneficial. Because only a fraction of gametes are sampled in each generation of a species, the neutral theory suggests that a mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Genetic Equilibrium
Genetic equilibrium is the condition of an allele or genotype in a gene pool (such as a population) where the frequency does not change from generation to generation. Genetic equilibrium describes a theoretical state that is the basis for determining whether and in what ways populations may deviate from it. Hardy–Weinberg equilibrium is one theoretical framework for studying genetic equilibrium. It is commonly studied using models that take as their assumptions those of Hardy-Weinberg, meaning: *No gene mutations occurring at that locus or the loci associated with the trait *A large population size *Limited-to-no immigration, emigration, or Human migration, migration (genetic flow) *No natural selection on that locus or trait *Random mating (panmixis) It can describe other types of equilibrium as well, especially in modeling contexts. In particular, many models use a variation of the Hardy–Weinberg principle as their basis. Instead of all of the Hardy–Weinberg characters being ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Genetic Load
Genetic load is the difference between the fitness of an average genotype in a population and the fitness of some reference genotype, which may be either the best present in a population, or may be the theoretically optimal genotype. The average individual taken from a population with a low genetic load will generally, when grown in the same conditions, have more surviving offspring than the average individual from a population with a high genetic load. Genetic load can also be seen as reduced fitness at the population level compared to what the population would have if all individuals had the reference high-fitness genotype. High genetic load may put a population in danger of extinction. Fundamentals Consider n genotypes \mathbf _1, \dots, \mathbf _n, which have the fitnesses w_1, \dots, w_n and frequencies p_1, \dots, p_n, respectively. Ignoring frequency-dependent selection, the genetic load L may be calculated as: :L = where w_\max is either some theoretical optimum, or t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mendelian Inheritance
Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized by William Bateson. These principles were initially controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics. Ronald Fisher combined these ideas with the theory of natural selection in his 1930 book ''The Genetical Theory of Natural Selection'', putting evolution onto a mathematical footing and forming the basis for population genetics within the modern evolutionary synthesis. History The principles of Mendelian inheritance were named for and first derived by Gregor Johann Mendel, a nineteenth-century Moravian monk who formulated his ideas after conducting simple hybridisation experiments with pea plants (' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Overdominance
Introduction Overdominance is a rare condition in genetics where the phenotype of the heterozygote lies outside the phenotypical range of both homozygous parents. Overdominance can also be described as heterozygote advantage regulated by a single genomic locus, wherein heterozygous individuals have a higher fitness than homozygous individuals. However, not all cases of the heterozygote advantage are considered overdominance, as they may be regulated by multiple genomic regions. Overdominance has been hypothesized as an underlying cause for heterosis (increased fitness of hybrid offspring). Examples Sickle cell anemia An example of overdominance in humans is that of the sickle cell anemia. This condition is determined by a single polymorphism. Possessors of the deleterious allele have lower life expectancy, with homozygotes rarely reaching 50 years of age. However, this allele also yields some resistance to malaria. Thus in regions where malaria exerts or has exerted a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]