Induction Of Regular Languages
   HOME
*



picture info

Induction Of Regular Languages
In computational learning theory, induction of regular languages refers to the task of learning a formal description (e.g. grammar) of a regular language from a given set of example strings. Although E. Mark Gold has shown that not every regular language can be learned this way (see language identification in the limit), approaches have been investigated for a variety of subclasses. They are sketched in this article. For learning of more general grammars, see Grammar induction. Example A ''regular language'' is defined as a (finite or infinite) set of ''strings'' that can be described by one of the mathematical formalisms called "finite automaton", "regular grammar", or "regular expression", all of which have the same expressive power. Since the latter formalism leads to shortest notations, it shall be introduced and used here. Given a set Σ of symbols (a.k.a. alphabet), a regular expression can be any of * ∅ (denoting the empty set of strings), * ε (denoting the singleton set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computational Learning Theory
In computer science, computational learning theory (or just learning theory) is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms. Overview Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible. The algorithm takes these previously labeled samples and uses them to induce a classifier. This classifier is a function that assigns labels to samples, including samples that have not been seen previously by the algorithm. The goal of the supervised learning algorithm is to optimize some measure of performance such as minimizing the number of mistakes made on new samples. In addition to performance bounds, computational learning theory studies the t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a relation on a set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Each partial order as well as each equivalence relation needs to be transitive. Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy, too, is an ancestor of Carrie. On the other hand, "is the birth parent of" is not a transitive relation, because if Alice is the birth parent of Brenda, and Brenda is the birth parent of Claire, then this does not imply that Alice is the birth parent of Claire. What is more, it is antitransitive: Alice can ''never'' be the birth parent of Claire. "Is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pumping Lemma For Context-free Languages
Pumping may refer to: * The operation of a pump, for moving a liquid from one location to another **The use of a breast pump for extraction of milk * Pumping (audio), a creative misuse of dynamic range compression * Pumping (computer systems), the number of times data is transmitted per clock cycle * Pumping (oil well), injecting chemicals into a wellbore * Pumping (noise reduction), an unwanted artifact of some noise reduction systems * Pumping lemma, in the theory of formal languages * Gastric lavage, cleaning the contents of the stomach * Optical pumping, in which light is used to raise electrons from a lower energy level to a higher one * Pump (skateboarding) {{single source, date=February 2019 Pumping is a skateboarding technique used to accelerate without the rider's feet leaving the board. Pumping can be done by turning or on a transition, like a ramp or quarter pipe.https://skateboarding.transworl ..., accelerating without pushing off of the ground * "Pumping" (My Heart) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Context-free Languages
In formal language theory, a context-free language (CFL) is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Background Context-free grammar Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language. Automata The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct. Examples An example context-free language is L = \, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pumping Lemma For Regular Languages
Pumping may refer to: * The operation of a pump, for moving a liquid from one location to another **The use of a breast pump for extraction of milk * Pumping (audio), a creative misuse of dynamic range compression * Pumping (computer systems), the number of times data is transmitted per clock cycle * Pumping (oil well), injecting chemicals into a wellbore * Pumping (noise reduction), an unwanted artifact of some noise reduction systems * Pumping lemma, in the theory of formal languages * Gastric lavage, cleaning the contents of the stomach * Optical pumping, in which light is used to raise electrons from a lower energy level to a higher one * Pump (skateboarding), accelerating without pushing off of the ground * Pumping (My Heart), "Pumping" (My Heart), a 1976 song by Patti Smith Group {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


String Homomorphism
In computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. Strings and languages A string is a finite sequence of characters. The empty string is denoted by \varepsilon. The concatenation of two string s and t is denoted by s \cdot t, or shorter by s t. Concatenating with the empty string makes no difference: s \cdot \varepsilon = s = \varepsilon \cdot s. Concatenation of strings is associative: s \cdot (t \cdot u) = (s \cdot t) \cdot u. For example, (\langle b \rangle \cdot \langle l \rangle) \cdot (\varepsilon \cdot \langle ah \rangle) = \langle bl \rangle \cdot \langle ah \rangle = \langle blah \rangle. A language is a finite or infinite set of strings. Besides the usual set operations like union, inters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Language (formal Language)
Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administration * Local news, coverage of events in a local context which would not normally be of interest to those of other localities * Local union, a locally based trade union organization which forms part of a larger union Arts, entertainment, and media * ''Local'' (comics), a limited series comic book by Brian Wood and Ryan Kelly * ''Local'' (novel), a 2001 novel by Jaideep Varma * Local TV LLC, an American television broadcasting company * Locast, a non-profit streaming service offering local, over-the-air television * ''The Local'' (film), a 2008 action-drama film * '' The Local'', English-language news websites in several European countries Computing * .local, a network address component * Local variable, a variable that is given lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleene Plus
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V is written as ''V^*''. It is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more repetitions". # If V is a set of strings, then ''V^*'' is defined as the smallest superset of V that contains the empty string \varepsilon and is closed under the string concatenation operation. # If V is a set of symbols or characters, then ''V^*'' is the set of all strings over symbols in V, including the empty string \varepsilon. The set ''V^*'' can also be described as the set containing the empty string and all finite-length strings that can be generated by concatenating arbitrary e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]