Illusory Continuity Of Tones
   HOME
*





Illusory Continuity Of Tones
The illusory continuity of tones is the auditory illusion caused when a tone is interrupted for a short time, during which a narrow band of noise is played. The noise has to be of a sufficiently high level to effectively mask the gap, unless it is a gap transfer illusion. Whether the tone is of constant, rising or decreasing pitch, the ear perceives the tone as continuous if the discontinuity is masked by noise. Because the human ear is very sensitive to sudden changes, however, it is necessary for the success of the illusion that the amplitude of the tone in the region of the discontinuity not decrease or increase too abruptly. While the inner mechanisms of this illusion is not well understood, there is evidence that supports activation of primarily the auditory cortex is present. Relation to Other Auditory Illusions Illusory continuity is antagonistic with illusory discontinuity. While illusory continuity restores perceptual continuity of obscured sounds, illusory discontin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Illusory Continuity Of Tones
The illusory continuity of tones is the auditory illusion caused when a tone is interrupted for a short time, during which a narrow band of noise is played. The noise has to be of a sufficiently high level to effectively mask the gap, unless it is a gap transfer illusion. Whether the tone is of constant, rising or decreasing pitch, the ear perceives the tone as continuous if the discontinuity is masked by noise. Because the human ear is very sensitive to sudden changes, however, it is necessary for the success of the illusion that the amplitude of the tone in the region of the discontinuity not decrease or increase too abruptly. While the inner mechanisms of this illusion is not well understood, there is evidence that supports activation of primarily the auditory cortex is present. Relation to Other Auditory Illusions Illusory continuity is antagonistic with illusory discontinuity. While illusory continuity restores perceptual continuity of obscured sounds, illusory discontin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Illusory Continuity Of Tones
The illusory continuity of tones is the auditory illusion caused when a tone is interrupted for a short time, during which a narrow band of noise is played. The noise has to be of a sufficiently high level to effectively mask the gap, unless it is a gap transfer illusion. Whether the tone is of constant, rising or decreasing pitch, the ear perceives the tone as continuous if the discontinuity is masked by noise. Because the human ear is very sensitive to sudden changes, however, it is necessary for the success of the illusion that the amplitude of the tone in the region of the discontinuity not decrease or increase too abruptly. While the inner mechanisms of this illusion is not well understood, there is evidence that supports activation of primarily the auditory cortex is present. Relation to Other Auditory Illusions Illusory continuity is antagonistic with illusory discontinuity. While illusory continuity restores perceptual continuity of obscured sounds, illusory discontin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Auditory Illusion
Auditory illusions are false perceptions of a real sound or outside stimulus. These false perceptions are the equivalent of an optical illusion: the listener hears either sounds which are not present in the stimulus, or sounds that should not be possible given the circumstance on how they were created. Humans are fairly susceptible to illusions, despite an innate ability to process complex stimuli. Confirmation bias is believed to be largely responsible for the inaccurate judgments that people make when evaluating information, given that humans typically interpret and recall information that appeals to their own biases. Amongst these misinterpretations, known as illusions, falls the category of auditory illusions. The brain uses multiple senses simultaneously to process information, spatial information is processed with greater detail and accuracy in vision than in hearing. Auditory illusions highlight areas where the human ear and brain, as organic survival tools, differentiat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pitch (music)
Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre. Pitch may be quantified as a frequency, but pitch is not a purely objective physical property; it is a subjective psychoacoustical attribute of sound. Historically, the study of pitch and pitch perception has been a central problem in psychoacoustics, and has been instrumental in forming and testing theories of sound representation, processing, and perception in the auditory system. Perception Pitch and frequency Pitch is an auditory sensation in which a listener assigns musical tones to relative positions on a musical scale based primarily on their perception of the frequency of vibration. Pitch is closely related to frequency, but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amplitude
The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude. Definitions Peak amplitude & semi-amplitude For symmetric periodic waves, like sine waves, square waves or triangle waves ''peak amplitude'' and ''semi amplitude'' are the same. Peak amplitude In audio system measurements, telecommunications and others where the measurand is a signal that swings above and below a reference value but is not sinusoidal, peak amplitude is often used. If the reference is zero, this is the maximum absolute value of the signal; if the reference is a mean value (DC component), the peak amplitude is the maximu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Illusory Discontinuity
Illusory discontinuity is an auditory illusion in which a continuous ongoing sound becomes inaudible during a brief, non-masking noise. The illusion is perceived only by some listeners, but not by others, reflecting individual variation in hearing abilities. It has been estimated that among young adults 24% are susceptible to illusory discontinuity.Vinnik E, Itskov PM, Balaban E (2011).Individual differences in sound-in-noise perception are related to the strength of short-latency neural responses to noise" PLoS One. 6(2): e17266. . The most susceptible listeners describe their sensations in terms of the sound actually containing a physical gap. The illusory discontinuity is strongest when the interrupting sound is short (50 ms). Longer sounds elicit weaker illusory discontinuity; this effect may be related to better auditory segregation. Relation to other auditory illusions Illusory discontinuity is antagonistic with illusory continuity of tones (auditory filling-in). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Auditory Cortex
The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates. It is a part of the auditory system, performing basic and higher functions in hearing, such as possible relations to language switching.Cf. Pickles, James O. (2012). ''An Introduction to the Physiology of Hearing'' (4th ed.). Bingley, UK: Emerald Group Publishing Limited, p. 238. It is located bilaterally, roughly at the upper sides of the temporal lobes – in humans, curving down and onto the medial surface, on the superior temporal plane, within the lateral sulcus and comprising parts of the transverse temporal gyri, and the superior temporal gyrus, including the planum polare and planum temporale (roughly Brodmann areas 41 and 42, and partially 22). The auditory cortex takes part in the spectrotemporal, meaning involving time and frequency, analysis of the inputs passed on from the ear. The cortex then filters and passes on the information to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brainstem
The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch, and sometimes the diencephalon is included in the brainstem. The brainstem is very small, making up around only 2.6 percent of the brain's total weight. It has the critical roles of regulating cardiac, and respiratory function, helping to control heart rate and breathing rate. It also provides the main motor and sensory nerve supply to the face and neck via the cranial nerves. Ten pairs of cranial nerves come from the brainstem. Other roles include the regulation of the central nervous system and the body's sleep cycle. It is also of prime importance in the conveyance of motor and sensory pathways from the rest of the brain to the body, and from the body back to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Superior Temporal Sulcus
The superior temporal sulcus (STS) is the sulcus separating the superior temporal gyrus from the middle temporal gyrus in the temporal lobe of the brain. A sulcus (plural sulci) is a deep groove that curves into the largest part of the brain, the cerebrum, and a gyrus (plural gyri) is a ridge that curves outward of the cerebrum. The STS is located under the lateral fissure, which is the fissure that separates the temporal lobe, parietal lobe, and frontal lobe. The STS has an asymmetric structure between the left and right hemisphere, with the STS being longer in the left hemisphere, but deeper in the right hemisphere. This asymmetrical structural organization between hemispheres has only been found to occur in the STS of the human brain. The STS has been shown to produce strong responses when subjects perceive stimuli in research areas that include theory of mind, biological motion, faces, voices, and language. Language Processing Spoken language processing The superior t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Broca's Area
Broca's area, or the Broca area (, also , ), is a region in the frontal lobe of the dominant Cerebral hemisphere, hemisphere, usually the left, of the Human brain, brain with functions linked to speech production. Language processing in the brain, Language processing has been linked to Broca's area since Pierre Paul Broca reported impairments in two patients. They had lost the ability to speak after injury to the posterior inferior frontal gyrus (pars triangularis) (BA45) of the brain. Since then, the approximate region he identified has become known as Broca's area, and the deficit in language production as Broca's aphasia, also called expressive aphasia. Broca's area is now typically defined in terms of the pars opercularis and pars triangularis of the inferior frontal gyrus, represented in Korbinian Brodmann, Brodmann's Brodmann area, cytoarchitectonic map as Brodmann area 44 and Brodmann area 45 of the dominant hemisphere. Functional magnetic resonance imaging (fMRI) has show ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Insular Cortex
The insular cortex (also insula and insular lobe) is a portion of the cerebral cortex folded deep within the lateral sulcus (the fissure separating the temporal lobe from the parietal and frontal lobes) within each hemisphere of the mammalian brain. The insulae are believed to be involved in consciousness and play a role in diverse functions usually linked to emotion or the regulation of the body's homeostasis. These functions include compassion, empathy, taste, perception, motor control, self-awareness, cognitive functioning, interpersonal experience, and awareness of homeostatic emotions such as hunger, pain and fatigue. In relation to these, it is involved in psychopathology. The insular cortex is divided into two parts: the anterior insula and the posterior insula in which more than a dozen field areas have been identified. The cortical area overlying the insula toward the lateral surface of the brain is the operculum (meaning ''lid''). The opercula are formed from parts o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sound Pressure
Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa). Mathematical definition A sound wave in a transmission medium causes a deviation (sound pressure, a ''dynamic'' pressure) in the local ambient pressure, a ''static'' pressure. Sound pressure, denoted ''p'', is defined by p_\text = p_\text + p, where * ''p''total is the total pressure, * ''p''stat is the static pressure. Sound measurements Sound intensity In a sound wave, the complementary variable to sound pressure is the particle velocity. Together, they determine the sound intensity of the wave. ''Sound intensity'', denoted I and measured in W· m−2 in SI units, is defined by \mathbf I = p \mathbf v, where * ''p'' is the sound pressure, * v is the particle velocity. Acoustic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]