Identifiability Analysis
   HOME
*





Identifiability Analysis
Identifiability analysis is a group of methods found in mathematical statistics that are used to determine how well the parameters of a model are estimated by the quantity and quality of experimental data.Cobelli & DiStefano (1980) Therefore, these methods explore not only identifiability of a model, but also the relation of the model to particular experimental data or, more generally, the data collection process. Introduction Assuming a model is fit to experimental data, the goodness of fit does not reveal how reliable the parameter estimates are. The goodness of fit is also not sufficient to prove the model was chosen correctly. For example, if the experimental data is noisy or if there is an insufficient number of data points, it could be that the estimated parameter values could vary drastically without significantly influencing the goodness of fit. To address these issues the identifiability analysis could be applied as an important step to ensure correct choice of model, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Statistics
Mathematical statistics is the application of probability theory, a branch of mathematics, to statistics, as opposed to techniques for collecting statistical data. Specific mathematical techniques which are used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure theory. Introduction Statistical data collection is concerned with the planning of studies, especially with the design of randomized experiments and with the planning of surveys using random sampling. The initial analysis of the data often follows the study protocol specified prior to the study being conducted. The data from a study can also be analyzed to consider secondary hypotheses inspired by the initial results, or to suggest new studies. A secondary analysis of the data from a planned study uses tools from data analysis, and the process of doing this is mathematical statistics. Data analysis is divided into: * descriptive statistics - the part of st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identifiability
In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions. A model that fails to be identifiable is said to be non-identifiable or unidentifiable: two or more parametrizations are observationally equivalent. In some cases, even though a model is non-identifiable, it is still possible to learn the true values of a certain subset of the model parameters. In this case we say that the model is partially identifiable. In other cases it ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goodness Of Fit
The goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test). In the analysis of variance, one of the components into which the variance is partitioned may be a lack-of-fit sum of squares. Fit of distributions In assessing whether a given distribution is suited to a data-set, the following tests and their underlying measures of fit can be used: * Bayesian information criterion *Kolmogorov–Smirnov test *Cramér–von Mises criterion *Anderson–Darling test * Shapiro–Wilk test *Chi-squared test *Akaike informat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Degrees Of Freedom (statistics)
In statistics, the number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary. Estimates of statistical parameters can be based upon different amounts of information or data. The number of independent pieces of information that go into the estimate of a parameter is called the degrees of freedom. In general, the degrees of freedom of an estimate of a parameter are equal to the number of independent scores that go into the estimate minus the number of parameters used as intermediate steps in the estimation of the parameter itself. For example, if the variance is to be estimated from a random sample of ''N'' independent scores, then the degrees of freedom is equal to the number of independent scores (''N'') minus the number of parameters estimated as intermediate steps (one, namely, the sample mean) and is therefore equal to ''N'' − 1. Mathematically, degrees of freedom is the number of dimensions of the domain o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curve Fitting
Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors. Fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more variables. Extrapolation refers to the use of a fitted curve beyond the range of the observed data, and is subject to a degree of uncertainty since it may reflect the method used to construct the curve as much as it reflects the observed data. For linear-algebraic analysis o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Estimation Theory
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An ''estimator'' attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered: * The probabilistic approach (described in this article) assumes that the measured data is random with probability distribution dependent on the parameters of interest * The set-membership approach assumes that the measured data vector belongs to a set which depends on the parameter vector. Examples For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the parameter sought; the estimate is based on a small random sample of voters. Alternatively, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identifiability
In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions. A model that fails to be identifiable is said to be non-identifiable or unidentifiable: two or more parametrizations are observationally equivalent. In some cases, even though a model is non-identifiable, it is still possible to learn the true values of a certain subset of the model parameters. In this case we say that the model is partially identifiable. In other cases it ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parameter Identification Problem
In economics and econometrics, the parameter identification problem arises when the value of one or more parameters in an economic model cannot be determined from observable variables. It is closely related to non-identifiability in statistics and econometrics, which occurs when a statistical model has more than one set of parameters that generate the same distribution of observations, meaning that multiple parameterizations are observationally equivalent. For example, this problem can occur in the estimation of multiple-equation econometric models where the equations have variables in common. In simultaneous equations models Standard example, with two equations Consider a linear model for the supply and demand of some specific good. The quantity demanded varies negatively with the price: a higher price decreases the quantity demanded. The quantity supplied varies directly with the price: a higher price increases the quantity supplied. Assume that, say for several years, we ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regression Analysis
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the 'outcome' or 'response' variable, or a 'label' in machine learning parlance) and one or more independent variables (often called 'predictors', 'covariates', 'explanatory variables' or 'features'). The most common form of regression analysis is linear regression, in which one finds the line (or a more complex linear combination) that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line (or hyperplane) that minimizes the sum of squared differences between the true data and that line (or hyperplane). For specific mathematical reasons (see linear regression), this allows the researcher to estimate the conditional expectation (or population average value) of the dependent variable when the independent variables take on a given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Water Resources Research
''Water Resources Research'' is a peer-reviewed scientific journal published by the American Geophysical Union, covering research in the social and natural sciences of water. The editor-in-chief is Georgia Destouni (Stockholm University), who took over from Martyn Clark (2017-2020). According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 5.240. Water Resources Research was begun in 1965, with Walter B. Langbein and Allen V. Kneese as its founding editors. References External links * {{American Geophysical Union English-language journals American Geophysical Union academic journals Wiley (publisher) academic journals Monthly journals Publications established in 1965 Environmental soci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PLOS Computational Biology
''PLOS Computational Biology'' is a monthly peer-reviewed open access scientific journal covering computational biology. It was established in 2005 by the Public Library of Science in association with the International Society for Computational Biology (ISCB) in the same format as the previously established ''PLOS Biology'' and ''PLOS Medicine''. The founding editor-in-chief was Philip Bourne and the current ones are Feilim Mac Gabhann and Jason Papin. Format The journal publishes both original research and review articles. All articles are open access and licensed under the Creative Commons Attribution License. Since its inception, the journal has published the ''Ten Simple Rules'' series of practical guides, which has subsequently become one of the journals most read article series. The ''Ten Simple Rules'' series then led to the ''Quick Tips'' collection, whose articles contain recommendations on computational practices and methods, such as dimensionality reduction for exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bioinformatics (journal)
''Bioinformatics'' (sometimes called ''Bioinformatics Oxford journal'') is a biweekly peer-reviewed scientific journal covering research and software in bioinformatics and computational biology. It is the official journal of the International Society for Computational Biology (ISCB), together with ''PLOS Computational Biology''. Authors can pay extra for open access and are allowed to self-archive after 1 year. The journal was established as ''Computer Applications in the Biosciences'' (''CABIOS'') in 1985. The founding editor-in-chief was Robert J. Beynon. In 1998, the journal obtained its current name and established an online version of the journal. It is published by Oxford University Press and, as of 2014, the editors-in-chief are Alfonso Valencia and Janet Kelso. Previous editors include Chris Sander, Gary Stormo, Christos Ouzounis, Martin Bishop, and Alex Bateman. In 2014, these five editors were appointed the first Honorary Editors of ''Bioinformatics''. According to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]