Ionescu-Tulcea Theorem
In the mathematical theory of probability, the Ionescu-Tulcea theorem, sometimes called the Ionesco Tulcea extension theorem, deals with the existence of probability measures for probabilistic events consisting of a countably infinite number of individual probabilistic events. In particular, the individual events may be independent or dependent with respect to each other. Thus, the statement goes beyond the mere existence of countable product measures. The theorem was proved by Cassius Ionescu-Tulcea in 1949.Index of /~cshalizi/754/notes Statement of the theorem Suppose that is a probability space and for |
|
Theory Of Probability
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Measure
In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume) is that a probability measure must assign value 1 to the entire probability space. Intuitively, the additivity property says that the probability assigned to the union of two disjoint events by the measure should be the sum of the probabilities of the events; for example, the value assigned to "1 or 2" in a throw of a dice should be the sum of the values assigned to "1" and "2". Probability measures have applications in diverse fields, from physics to finance and biology. Definition The requirements for a function \mu to be a probability measure on a probability space are that: * \mu must return results in the unit interval , 1 returning 0 for the empty set and 1 for t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Independence (probability Theory)
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Measure
In mathematics, given two measurable spaces and measures on them, one can obtain a product measurable space and a product measure on that space. Conceptually, this is similar to defining the Cartesian product of sets and the product topology of two topological spaces, except that there can be many natural choices for the product measure. Let (X_1, \Sigma_1) and (X_2, \Sigma_2) be two measurable spaces, that is, \Sigma_1 and \Sigma_2 are sigma algebras on X_1 and X_2 respectively, and let \mu_1 and \mu_2 be measures on these spaces. Denote by \Sigma_1 \otimes \Sigma_2 the sigma algebra on the Cartesian product X_1 \times X_2 generated by subsets of the form B_1 \times B_2, where B_1 \in \Sigma_1 and B_2 \in \Sigma_2. This sigma algebra is called the ''tensor-product σ-algebra'' on the product space. A ''product measure'' \mu_1 \times \mu_2 (also denoted by \mu_1 \otimes \mu_2 by many authors) is defined to be a measure on the measurable space (X_1 \times X_2, \Sigma_1 \ot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cassius Ionescu-Tulcea
Cassius Tocqueville Ionescu Tulcea ( ro, Casius Ionescu-Tulcea; October 14, 1923 – March 6, 2021) was a Romanian-American mathematician, specializing in probability theory, statistics and mathematical analysis. Ionescu Tulcea was born in October 1923 in Bucharest. He received his diploma from the University of Bucharest in 1946; there he was an assistant professor from 1946 to 1950, a lecturer from 1950 to 1951, and an associate professor from 1952 to 1957. Additionally, from 1949 to 1957 he was a researcher at the Institute of Mathematics of the Romanian Academy. In 1957 he moved to the United States with his wife Alexandra Ionescu Tulcea (''née'' Bagdasar), who had been his student. From 1957 to 1961 he worked as a research associate and visiting lecturer at Yale University. He received his doctorate from Yale in 1959 under the supervision of Einar Hille with thesis ''Semi-groups of Operators''. Cassius Ionescu Tulcea was from 1959 to 1961 a visiting professor at Yale Universi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements:Stroock, D. W. (1999). Probability theory: an analytic view. Cambridge University Press. # A sample space, \Omega, which is the set of all possible outcomes. # An event space, which is a set of events \mathcal, an event being a set of outcomes in the sample space. # A probability function, which assigns each event in the event space a probability, which is a number between 0 and 1. In order to provide a sensible model of probability, these elements must satisfy a number of axioms, detailed in this article. In the example of the throw of a standard die, we would take the sample space to be \. For the event space, we could simply use the set of all subsets of the sample ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measurable Space
In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the tuple (X, \mathcal A) is called a measurable space. Note that in contrast to a measure space, no measure is needed for a measurable space. Example Look at the set: X = \. One possible \sigma-algebra would be: \mathcal A_1 = \. Then \left(X, \mathcal A_1\right) is a measurable space. Another possible \sigma-algebra would be the power set on X: \mathcal A_2 = \mathcal P(X). With this, a second measurable space on the set X is given by \left(X, \mathcal A_2\right). Common measurable spaces If X is finite or countably infinite, the \sigma-algebra is most often the power set on X, so \mathcal A = \mathcal P(X). This leads to the measurable space (X, \mathcal P(X)). If X is a topological space In mathematics, a topological space is, rou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Markov Kernel
In probability theory, a Markov kernel (also known as a stochastic kernel or probability kernel) is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space. Formal definition Let (X,\mathcal A) and (Y,\mathcal B) be measurable spaces. A ''Markov kernel'' with source (X,\mathcal A) and target (Y,\mathcal B) is a map \kappa : \mathcal B \times X \to ,1/math> with the following properties: # For every (fixed) B \in \mathcal B, the map x \mapsto \kappa(B, x) is \mathcal A-measurable # For every (fixed) x \in X, the map B \mapsto \kappa(B, x) is a probability measure on (Y, \mathcal B) In other words it associates to each point x \in X a probability measure \kappa(dy, x): B \mapsto \kappa(B, x) on (Y,\mathcal B) such that, for every measurable set B\in\mathcal B, the map x\mapsto \kappa(B, x) is measurable with respect to the \sigma-algebra \mathcal A. Examples Simple ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Probability
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is and the event is known or assumed to have occurred, "the conditional probability of given ", or "the probability of under the condition ", is usually written as or occasionally . This can also be understood as the fraction of probability B that intersects with A: P(A \mid B) = \frac. For example, the probability that any given person has a cough on any given day may be only 5%. But if we know or assume that the person is sick, then they are much more likely to be coughing. For example, the conditional probability that someone unwell (sick) is coughing might be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Markov Chain
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs ''now''." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC). It is named after the Russian mathematician Andrey Markov. Markov chains have many applications as statistical models of real-world processes, such as studying cruise control systems in motor vehicles, queues or lines of customers arriving at an airport, currency exchange rates and animal population dynamics. Markov processes are the basis for general stochastic simulation methods known as Markov chain Monte Carlo, which are used for simulating sampling from complex probability dist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |