Intermediate Luminosity Optical Transient
An Intermediate Luminosity Optical Transient (ILOT) is an astronomical object which undergoes an optically detectable explosive event with an absolute magnitude (''M'') brighter than a classical nova (''M'' ~ -8) but fainter than that of a supernova (''M'' ~ -17). That nine magnitude range corresponds to a factor of nearly 4000 in luminosity, so the ILOT class may include a wide variety of objects. The term ILOT first appeared in a 2009 paper discussing the nova-like event NGC 300 OT2008-1. As the term has gained more widespread use, it has begun to be applied to some objects like KjPn 8 and CK Vulpeculae for which no transient event has been observed, but which may have been dramatically affected by an ILOT event in the past. The number of ILOTs known is expected to increase substantially when the Vera C. Rubin Observatory becomes operational. A very wide variety of objects have been classified as ILOTs in the astronomical literature. Kashi and Soker proposed a model for the o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Magnitude
Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse Logarithmic scale, logarithmic Magnitude (astronomy), astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly , without Extinction (astronomy), extinction (or dimming) of its light due to absorption by Interstellar medium, interstellar matter and cosmic dust. By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale. As with all astronomical magnitude (astronomy), magnitudes, the absolute magnitude can be specified for different wavelength ranges corresponding to specified Filter (optics), filter bands or passbands; for stars a commonly quoted absolute magnitude is the absolute visual magnitude, which uses the visual (V) band of the spectrum (in the UBV phot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classical Nova
A nova (plural novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", which is Latin for "new") that slowly fades over weeks or months. Causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. All observed novae involve white dwarfs in close binary systems. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars. Classical nova eruptions are the most common type. They are likely created in a close binary star system consisting of a white dwarf and either a main sequence, subgiant, or red giant star. When the orbital period falls in the range of several days to one day, the white dwarf is close enough to its companion star to start drawing accreted matter onto the surface of the white dwarf, which creates a dense but shallow atmosphere. This atmosp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NGC 300
NGC 300 (also known as Caldwell 70) is a spiral galaxy in the constellation Sculptor. It is one of the closest galaxies to the Local Group, and probably lies between the latter and the Sculptor Group. It is the brightest of the five main spirals in the direction of the Sculptor Group. It is inclined at an angle of 42° when viewed from Earth and shares many characteristics of the Triangulum Galaxy. It is 94,000 light-years in diameter, somewhat smaller than the Milky Way, and has an estimated mass of (2.9 ± 0.2) × 1010 . Nearby galaxies and group information NGC 300 and the irregular galaxy NGC 55 have traditionally been identified as members of the Sculptor Group, a nearby group of galaxies in the constellation of the same name. However, recent distance measurements indicate that these two galaxies actually lie in the foreground. It is likely that NGC 300 and NGC 55 form a gravitationally bound pair. Distance estimates In 1986, Allan Sandage estima ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
KjPn 8
KjPn 8 is a bipolar planetary nebula which was discovered by M.A. Kazaryan and Eh. S. Parsamyan in 1971 and independently by Luboš Kohoutek in 1972. Very little was published about this nebula until 1995, when it was realized that KjPn 8 sits in the center of a very large filamentary nebula, 14 by 4 arc minutes in size. This is the largest known bipolar structure associated with a planetary nebula. Narrow band images centered at Hα and forbidden line transitions of nitrogen, sulphur, and oxygen reveal pairs of bow shocks at differing position angles, indicating the presence of episodic ejection of material along a precessing jet, similar to what is seen in Fleming 1, but much larger (in angular extent). The physical size of this extended nebula is approximately 4.1 by 1.2 parsecs, much larger than a typical planetary nebula, while the core nebula known prior to 1995 is only about 0.2 parsecs in diameter. The envelope of KjPn 8 is expanding rapidly enough to allow the proper mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CK Vulpeculae
CK Vulpeculae (also Nova Vulpeculae 1670) is an object whose exact nature is unknown. It was once considered to be the oldest reliably-documented nova. It consists of a compact central object surrounded by a bipolar nebula. Models suggest CK Vulpeculae may not be a classic nova; rather it may be classified as a luminous red nova which is the result of two main sequence stars colliding and merging. A 2018 study found it was most likely the result of an unusual collision of a white dwarf and a brown dwarf. A 2020 article ruled out this proposed mechanism and proposes that CK Vulpeculae is an intermediate luminosity optical transient, i.e. an object in the luminosity gap between supernovae and novae. Eruptive history CK Vulpeculae was discovered on June 20th 1670 by Voituret Anthelme and independently on July 25 by Johannes Hevelius. It had a brightness maximum of approximately magnitude 3 at its discovery after which it faded. A second maximum of approximately 2.6 mag ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vera C
Vera may refer to: Names *Vera (surname), a surname (including a list of people with the name) *Vera (given name), a given name (including a list of people and fictional characters with the name) **Vera (), archbishop of the archdiocese of Tarragona Places Spain *Vera, Almería, a municipality in the province of Almería, Andalusia * Vera de Bidasoa, a municipality in the autonomous community of Navarra *La Vera, a comarca in the province of Cáceres, Extremadura United States *Vera, Illinois, an unincorporated community * Vera, Kansas, a ghost town * Vera, Missouri, an unincorporated community * Vera, Oklahoma, a town *Vera, Texas, an unincorporated community * Vera, Virginia, an unincorporated community *Veradale, Washington, originally known as Vera, CDP Elsewhere *Vera, Santa Fe, a city in the province of Santa Fe, Argentina * Vera Department, an administrative subdivision (departamento) of the province of Santa Fe * Vera, Mato Grosso, Brazil, a municipality * Cape Vera, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Main Sequence
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hertzsprung and Henry Norris Russell. Stars on this band are known as main-sequence stars or dwarf stars. These are the most numerous true stars in the universe and include the Sun. After condensation and ignition of a star, it generates thermal energy in its dense core region through nuclear fusion of hydrogen into helium. During this stage of the star's lifetime, it is located on the main sequence at a position determined primarily by its mass but also based on its chemical composition and age. The cores of main-sequence stars are in hydrostatic equilibrium, where outward thermal pressure from the hot core is balanced by the inward pressure of gravitational collapse from the overlying layers. The strong dependence of the rate of energy ge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Red Nova
A luminous red nova (abbr. ''LRN'', pl. ''luminous red novae'', pl.abbr. ''LRNe'') is a stellar explosion thought to be caused by the merging of two stars. They are characterised by a distinct red colour, and a light curve that fades slowly with resurgent brightness in the infrared. Luminous red novae are not related to standard novae, which are explosions that occur on the surface of white dwarf stars. Discovery A small number of objects exhibiting the characteristics of luminous red novae have been observed over the last 30 years or so. The red star M31 RV in the Andromeda Galaxy flared brightly during 1988 and may have been a luminous red nova. In 1994, V4332 Sagittarii, a star in the Milky Way galaxy, flared similarly, and in 2002, V838 Monocerotis followed suit and was studied quite closely. The first confirmed luminous red nova was the object M85 OT2006-1, in the galaxy Messier 85. It was first observed during the Lick Observatory Supernova Search, and subsequently ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Luminous Blue Variable
Luminous blue variables (LBVs) are massive evolved stars that show unpredictable and sometimes dramatic variations in their spectra and brightness. They are also known as S Doradus variables after S Doradus, one of the brightest stars of the Large Magellanic Cloud. They are extraordinarily rare, with just 20 objects listed in the General Catalogue of Variable Stars as SDor, and a number of these are no longer considered LBVs. Discovery and history The LBV stars P Cygni and η Carinae have been known as unusual variables since the 17th century, but their true nature was not fully understood until late in the 20th century. In 1922 John Charles Duncan published the first three variable stars ever detected in an external galaxy, variables 1, 2, and 3, in the Triangulum Galaxy (M33). These were followed up by Edwin Hubble with three more in 1926: A, B, and C in M33. Then in 1929 Hubble added a list of variables detected in M31. Of these, Var A, Var B, Var C, and Var 2 in M33 and Var ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eta Carinae
Eta Carinae (η Carinae, abbreviated to η Car), formerly known as Eta Argus, is a stellar system containing at least two stars with a combined luminosity greater than five million times that of the Sun, located around distant in the constellation Carina. Previously a 4th-magnitude star, it brightened in 1837 to become brighter than Rigel, marking the start of its so-called "Great Eruption". It became the second-brightest star in the sky between 11 and 14 March 1843 before fading well below naked eye visibility after 1856. In a smaller eruption, it reached 6th magnitude in 1892 before fading again. It has brightened consistently since about 1940, becoming brighter than magnitude 4.5 by 2014. At declination −59° 41′ 04.26″, Eta Carinae is circumpolar from locations on Earth south of latitude 30°S, (for reference, the latitude of Johannesburg is 26°12′S); and is not visible north of about latitude 30°N, just south of Cairo, which is at a latitude ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Failed Supernova
A failed supernova is an astronomical event in time domain astronomy in which a star suddenly brightens as in the early stage of a supernova, but then does not increase to the massive flux of a supernova. They could be counted as a subcategory of supernova imposters. They have sometimes misleadingly been called unnovae. Overview Failed supernovae are thought to create stellar black holes by the collapsing of a red supergiant star in the early stages of a supernova. When the star can no longer support itself, the core collapses completely, forming a stellar-mass black hole, and consuming the nascent supernova without having the massive explosion. For a distant observer, the red supergiant star will seem to wink out of existence with little or no flare-up. The observed instances of these disappearances seem to involve supergiant stars with masses above 17 solar masses. Failed supernovae are one of several events that theoretically signal the advent of a black hole born from an e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solar Mass
The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass of the Sun. This equates to about two nonillion (short scale), two quintillion (long scale) kilograms or 2000 quettagrams: The solar mass is about times the mass of Earth (), or times the mass of Jupiter (). History of measurement The value of the gravitational constant was first derived from measurements that were made by Henry Cavendish in 1798 with a torsion balance. The value he obtained differs by only 1% from the modern value, but was not as precise. The diurnal parallax of the Sun was accurately measured during the transits of Venus in 1761 and 1769, yielding a value of (9 arcseconds, compared to the present value of ). From the value of the diurnal parallax, one can determine the distance to the Sun from the geometry o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |