Hyperspecial Subgroup
   HOME
*





Hyperspecial Subgroup
In the theory of reductive groups over local fields, a hyperspecial subgroup of a reductive group ''G'' is a certain type of compact subgroup of ''G''. In particular, let ''F'' be a nonarchimedean local field, ''O'' its ring of integers, ''k'' its residue field and ''G'' a reductive group over ''F''. A subgroup ''K'' of ''G(F)'' is called hyperspecial if there exists a smooth group scheme Γ over ''O'' such that *ΓF=''G'', *Γk is a connected reductive group, and *Γ(''O'')=''K''. The original definition of a hyperspecial subgroup (appearing in section 1.10.2 of Tits, Jacques, Reductive Groups over Local Fields i''Automorphic forms, representations and L-functions, Part 1'' Proc. Sympos. Pure Math. XXXIII, 1979, pp. 29-69.) was in terms of ''hyperspecial points'' in the Bruhat–Tits building In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reductive Group
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group ''GL''(''n'') of invertible matrices, the special orthogonal group ''SO''(''n''), and the symplectic group ''Sp''(2''n''). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive. Claude Chevalley showed that the classification of reductive groups is the same over any algebraically closed field. In particular, the simple algebraic groups are classified by Dynkin diagrams, as in the theory of compact Lie groups or complex semisimple Lie algebras. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the real numbers R or a numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Fields
''Corps Locaux'' by Jean-Pierre Serre, originally published in 1962 and translated into English as ''Local Fields'' by Marvin Jay Greenberg in 1979, is a seminal graduate-level algebraic number theory text covering local fields, ramification, group cohomology, and local class field theory In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite re .... The book's end goal is to present local class field theory from the cohomological point of view. This theory concerns extensions of "local" (i.e., complete for a discrete valuation) fields with finite residue field. Contents #''Part I, Local Fields (Basic Facts)'': Discrete valuation rings, Dedekind domains, and Completion. #''Part II, Ramification'': Discriminant & Different, Ramification Groups, The Norm, and Artin Representation. #''Part I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Scheme
In mathematics, a group scheme is a type of object from Algebraic geometry, algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of Scheme (mathematics), schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The Category (mathematics), category of group schemes is somewhat better behaved than that of Group variety, group varieties, since all homomorphisms have Kernel (category theory), kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The ini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bruhat–Tits Building
In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of -adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups. Overview The notion of a building was invented by Jacques Tits as a means of describing simple algebraic groups over an arbitrary field. Tits demonstrated how to every such group one can associate a simplicial complex with an action of , called the spherical building of . The group imposes very strong combinatorial regularity conditions on the complexes that can arise in this fashion. By tre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]