Hugo Hadwiger
   HOME



picture info

Hugo Hadwiger
Hugo Hadwiger (23 December 1908 in Karlsruhe, Germany – 29 October 1981 in Bern, Switzerland) was a Swiss people, Swiss mathematician, known for his work in geometry, combinatorics, and cryptography. Biography Although born in Karlsruhe, Germany, Hadwiger grew up in Bern, Switzerland.. He did his undergraduate studies at the University of Bern, where he majored in mathematics but also studied physics and actuarial science. He continued at Bern for his graduate studies, and received his Ph.D. in 1936 under the supervision of Willy Scherrer. He was for more than forty years a professor of mathematics at Bern. Mathematical concepts named after Hadwiger Hadwiger's theorem in integral geometry classifies the isometry-invariant valuation (geometry), valuations on compact set, compact convex sets in ''d''-dimensional Euclidean space. According to this theorem, any such valuation can be expressed as a linear combination of the Mixed_volume#Quermassintegrals, intrinsic volumes; for i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Area
Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept). Two different regions may have the same area (as in squaring the circle); by synecdoche, "area" sometimes is used to refer to the region, as in a " polygonal area". The area of a shape can be measured by comparing the shape to squares of a fixed size. In the International System of Units (SI), the standard unit of area is the square metre (written as m2), which is the area o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a Graph (discrete mathematics), graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the Vertex (graph theory), vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an ''edge coloring'' assigns a color to each Edge (graph theory), edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each Face (graph theory), face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




European Journal Of Combinatorics
The ''European Journal of Combinatorics'' is an international peer-reviewed scientific journal that specializes in combinatorics. The journal primarily publishes papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and the theories of computing. The journal includes full-length research papers, short notes, and research problems on several topics. This journal has been founded in 1980 by Michel Deza, Michel Las Vergnas and Pierre Rosenstiehl. The current editor-in-chief is Patrice Ossona de Mendez and the vice editor-in-chief is Marthe Bonamy. Abstracting and indexing The journal is abstracted and indexed in *MathSciNet, *Science Citation Index Expanded, *Scopus Scopus is a scientific abstract and citation database, launched by the academic publisher Elsevier as a competitor to older Web of Science in 2004. The ensuing competition between the two databases has been characterized as "intense" and is c . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadwiger Conjecture (graph Theory)
In graph theory, the Hadwiger conjecture states that if G is loopless and has no K_t minor then its chromatic number satisfies It is known to be true for The conjecture is a generalization of the four color theorem and is considered to be one of the most important and challenging open problems in the field. In more detail, if all proper colorings of an undirected graph G use k or more colors, then one can find k disjoint connected subgraphs of G such that each subgraph is connected by an edge to each other subgraph. Contracting the edges within each of these subgraphs so that each subgraph collapses to a single vertex produces a complete graph K_k on k vertices as a minor The conjecture was made by Hugo Hadwiger in 1943. call it "one of the deepest unsolved problems in graph theory". Equivalent forms An equivalent form of the Hadwiger conjecture (the contrapositive of the form stated above) is that, if there is no sequence of edge contractions (each merging the two e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finsler–Hadwiger Theorem
The Finsler–Hadwiger theorem is statement in Euclidean plane geometry that describes a third square derived from any two squares that share a vertex. The theorem is named after Paul Finsler and Hugo Hadwiger, who published it in 1937 as part of the same paper in which they published the Hadwiger–Finsler inequality In mathematics, the Hadwiger–Finsler inequality is a result on the geometry of triangles in the Euclidean plane. It states that if a triangle in the plane has side lengths ''a'', ''b'' and ''c'' and area ''T'', then :a^ + b^ + c^ \geq (a - b)^ + ... relating the side lengths and area of a triangle. Statement To state the theorem, suppose that ABCD and AB'C'D' are two squares with common vertex A. Let E and G be the midpoints of B'D and D'B respectively, and let F and H be the centers of the two squares. Then the theorem states that the quadrilateral EFGH is a square as well. The square EFGH is called the Finsler–Hadwiger square of the two given squares. It ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pedoe's Inequality
In geometry, Pedoe's inequality (also Neuberg–Pedoe inequality), named after Daniel Pedoe (1910–1998) and Joseph Jean Baptiste Neuberg (1840–1926), states that if ''a'', ''b'', and ''c'' are the lengths of the sides of a triangle with area ''ƒ'', and ''A'', ''B'', and ''C'' are the lengths of the sides of another triangle with area ''F'', then :A^2(b^2+c^2-a^2)+B^2(a^2+c^2-b^2)+C^2(a^2+b^2-c^2)\geq 16Ff,\, with equality if and only if the two triangles are similar with pairs of corresponding sides (''A, a''), (''B, b''), and (''C, c''). The expression on the left is not only symmetric under any of the six permutations of the set of pairs, but also—perhaps not so obviously—remains the same if ''a'' is interchanged with ''A'' and ''b'' with ''B'' and ''c'' with ''C''. In other words, it is a symmetric function of the pair of triangles. Pedoe's inequality is a generalization of Weitzenböck's inequality, which is the case in which one of the triang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commentarii Mathematici Helvetici
The ''Commentarii Mathematici Helvetici'' is a quarterly peer-reviewed scientific journal in mathematics. The Swiss Mathematical Society (SMG) started the journal in 1929 after a meeting in May of the previous year. The Swiss Mathematical Society still owns and operates the journal; the publishing is currently handled on its behalf by the European Mathematical Society. The scope of the journal includes research articles in all aspects in mathematics. The editors-in-chief have been Rudolf Fueter (1929–1949), J.J. Burckhardt (1950–1981), P. Gabriel (1982–1989), H. Kraft (1990–2005), and Eva Bayer-Fluckiger (2006–present). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2019 impact factor of 0.854. History The idea for a society-owned research journal emerged in June 1926, when the SMG petitioned the Swiss Confederation for a CHF 3,500 subsidy "to establish its own scientific jour ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Plane
In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of each point (mathematics), point. It is an affine space, which includes in particular the concept of parallel lines. It has also measurement, metrical properties induced by a Euclidean distance, distance, which allows to define circles, and angle, angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a ''Cartesian plane''. The set \mathbb^2 of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called ''the'' Euclidean plane or ''standard Euclidean plane'', since every Euclidean plane is isomorphic to it. History Books I through IV and VI of Euclid's Elements dealt with two-dimensional geometry, developing such notions as similarity of shapes, the Pythagor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the ''base'', in which case the opposite vertex is called the ''apex''; the shortest segment between the base and apex is the ''height''. The area of a triangle equals one-half the product of height and base length. In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Paul Finsler
Paul Finsler (born 11 April 1894, in Heilbronn, Germany, died 29 April 1970 in Zurich, Switzerland) was a German and Swiss mathematician. Finsler did his undergraduate studies at the Technische Hochschule Stuttgart, and his graduate studies at the University of Göttingen, where he received his Ph.D. in 1919 under the supervision of Constantin Carathéodory. He studied for his habilitation at the University of Cologne, receiving it in 1922. He joined the faculty of the University of Zurich in 1927, and was promoted to ordinary professor there in 1944. Finsler's thesis work concerned differential geometry, and Finsler spaces were named after him by Élie Cartan in 1934. The Hadwiger–Finsler inequality, a relation between the side lengths and area of a triangle in the Euclidean plane, is named after Finsler and his co-author Hugo Hadwiger, as is the Finsler–Hadwiger theorem on a square derived from two other squares that share a vertex. Finsler is also known for his work on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]