Hilbert's Tenth Problem
   HOME



picture info

Hilbert's Tenth Problem
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values. For example, the Diophantine equation 3x^2-2xy-y^2z-7=0 has an integer solution: x=1,\ y=2,\ z=-2. By contrast, the Diophantine equation x^2+y^2+1=0 has no such solution. Hilbert's tenth problem has been solved, and it has a negative answer: such a general algorithm cannot exist. This is the result of combined work of Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson that spans 21 years, with Matiyasevich completing the theorem in 1970. The theorem is now known as Matiyasevich's theorem or the MRDP theorem (an initialism for the surnames of the four principal contributors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert's Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in ''Archiv der Mathematik und Physik''. and Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, 21, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




The Mathematical Intelligencer
''The Mathematical Intelligencer'' is a mathematical journal published by Springer Science+Business Media that aims at a conversational and scholarly tone, rather than the technical and specialist tone more common among academic journals. Volumes are released quarterly with a subset of open access articles. Some articles have been cross-published in the ''Scientific American''. Karen Parshall and Sergei Tabachnikov are currently the co-editors-in-chief. History The journal was started informally in 1971 by Walter Kaufmann-Buehler and Alice and Klaus Peters. "Intelligencer" was chosen by Kaufmann-Buehler as a word that would appear slightly old-fashioned. An exploration of mathematically themed stamps, written by Robin Wilson, became one of its earliest columns. Prior to 1977, articles of the ''Intelligencer'' were not contained in regular volumes and were sent out sporadically to those on a mailing list. To gauge interest, the inaugural mailing included twelve thousand people ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nikolai Nikolayevich Vorobyov (mathematician)
Nikolai Nikolayevich Vorobyov (also Vorobiev) (, 18 September 1925, Leningrad — July 14, 1995) was a Soviet and Russian mathematician, an expert in the field of abstract algebra, mathematical logic and probability theory, the founder of the Soviet school of game theory. He is an author of two textbooks, three monographs, a large number of mathematical articles and a number of popular science books. He supervised over 30 kandidat and D.Sc (habilitation) dissertations.Николай Николаевич Воробьев
a biography at the

If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Reviews
''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also publishes an associated online bibliographic database called MathSciNet, which contains an electronic version of ''Mathematical Reviews''. Reviews Mathematical Reviews was founded by Otto E. Neugebauer in 1940 as an alternative to the German journal '' Zentralblatt für Mathematik'', which Neugebauer had also founded a decade earlier, but which under the Nazis had begun censoring reviews by and of Jewish mathematicians. The goal of the new journal was to give reviews of every mathematical research publication. As of November 2007, the ''Mathematical Reviews'' database contained information on over 2.2 million articles. The authors of reviews are volunteers, usually chosen by the editors because of some expertise in the area of the articl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conditional Proof
A conditional proof is a proof that takes the form of asserting a conditional, and proving that the antecedent of the conditional necessarily leads to the consequent. Overview The assumed antecedent of a conditional proof is called the conditional proof assumption (CPA). Thus, the goal of a conditional proof is to demonstrate that if the CPA were true, then the desired conclusion necessarily follows. The validity of a conditional proof does not require that the CPA be true, only that ''if it were true'' it would lead to the consequent. Conditional proofs are of great importance in mathematics. Conditional proofs exist linking several otherwise unproven conjectures, so that a proof of one conjecture may immediately imply the validity of several others. It can be much easier to show a proposition's truth to follow from another proposition than to prove it independently. A famous network of conditional proofs is the NP-complete class of complexity theory. There is a large num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Green–Tao Theorem
In number theory, the Green–Tao theorem, proven by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number k, there exist arithmetic progressions of primes with k terms. The proof is an extension of Szemerédi's theorem. The problem can be traced back to investigations of Lagrange and Waring from around 1770.. Statement Let \pi(N) denote the number of primes less than or equal to N. If A is a subset of the prime numbers such that : \limsup_ \frac>0, then for all positive integers k, the set A contains infinitely many arithmetic progressions of length k. In particular, the entire set of prime numbers contains arbitrarily long arithmetic progressions. In their later work on the generalized Hardy–Littlewood conjecture, Green and Tao stated and conditionally proved the asymptotic formula : (\mathfrak_k + o(1))\frac for the number of ''k'' tuples of primes p_1 < ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). The theorem is sometimes called Sunzi's theorem. Both names of the theorem refer to its earliest known statement that appeared in '' Sunzi Suanjing'', a Chinese manuscript written during the 3rd to 5th century CE. This first statement was restricted to the following example: If one knows that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then with no other information, one can determine the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) without knowing the value of ''n''. In this example, the remainder is 23. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Gödel
Kurt Friedrich Gödel ( ; ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel profoundly influenced scientific and philosophical thinking in the 20th century (at a time when Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics), building on earlier work by Frege, Richard Dedekind, and Georg Cantor. Gödel's discoveries in the foundations of mathematics led to the proof of his completeness theorem in 1929 as part of his dissertation to earn a doctorate at the University of Vienna, and the publication of Gödel's incompleteness theorems two years later, in 1931. The incompleteness theorems address limitations of formal axiomatic systems. In parti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Leon Post
Emil Leon Post (; February 11, 1897 – April 21, 1954) was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory. Life Post was born in Augustów, Suwałki Governorate, Congress Poland, Russian Empire (now Poland) into a Polish-Jewish family that immigrated to New York City in May 1904. His parents were Arnold and Pearl Post. Post had been interested in astronomy, but at the age of twelve lost his left arm in a car accident. This loss was a significant obstacle to being a professional astronomer, leading to his decision to pursue mathematics rather than astronomy. Post attended the Townsend Harris High School and continued on to graduate from City College of New York in 1917 with a B.S. in mathematics. After completing his Ph.D. in mathematics in 1920 at Columbia University, supervised by Cassius Jackson Keyser, he did a post-doctorate at Princeton University in the 1920–1921 academic yea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MRDP Theorem
In mathematics, a Diophantine equation is an equation of the form ''P''(''x''1, ..., ''x''''j'', ''y''1, ..., ''y''''k'') = 0 (usually abbreviated ''P''(', ') = 0) where ''P''(', ') is a polynomial with integer coefficients, where ''x''1, ..., ''x''''j'' indicate parameters and ''y''1, ..., ''y''''k'' indicate unknowns. A Diophantine set is a subset ''S'' of \mathbb^j, the set of all ''j''-tuples of natural numbers, so that for some Diophantine equation ''P''(', ') = 0, :\bar \in S \iff (\exists \bar \in \mathbb^)(P(\bar,\bar)=0) . That is, a parameter value is in the Diophantine set ''S'' if and only if the associated Diophantine equation is satisfiable under that parameter value. The use of natural numbers both in ''S'' and the existential quantification merely reflects the usual applications in computability theory and model theory. It does not matter whether natural numbers refer to the set of nonnegative integers or positive integers since the two definitions for Diophantine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]