Hilbert's Tenth Problem
   HOME
*



picture info

Hilbert's Tenth Problem
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm which, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values. For example, the Diophantine equation 3x^2-2xy-y^2z-7=0 has an integer solution: x=1,\ y=2,\ z=-2. By contrast, the Diophantine equation x^2+y^2+1=0 has no such solution. Hilbert's tenth problem has been solved, and it has a negative answer: such a general algorithm does not exist. This is the result of combined work of Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson which spans 21 years, with Matiyasevich completing the theorem in 1970. The theorem is now known as Matiyasevich's theorem or the MRDP theorem (an initialism for the surnames of the four principal contribut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert's Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the University of Paris, Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in and Nature and influence of the problems Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Diophantine Set
In mathematics, a Diophantine equation is an equation of the form ''P''(''x''1, ..., ''x''''j'', ''y''1, ..., ''y''''k'') = 0 (usually abbreviated ''P''(', ') = 0) where ''P''(', ') is a polynomial with integer coefficients, where ''x''1, ..., ''x''''j'' indicate parameters and ''y''1, ..., ''y''''k'' indicate unknowns. A Diophantine set is a subset ''S'' of \mathbb^j, the set of all ''j''-tuples of natural numbers, so that for some Diophantine equation ''P''(', ') = 0, :\bar \in S \iff (\exists \bar \in \mathbb^)(P(\bar,\bar)=0) . That is, a parameter value is in the Diophantine set ''S'' if and only if the associated Diophantine equation is satisfiable under that parameter value. The use of natural numbers both in ''S'' and the existential quantification merely reflects the usual applications in computability and model theory. It does not matter whether natural numbers refer to the set of nonnegative integers or positive integers since the two definitions for Diophantine set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nikolai Nikolayevich Vorobyov (mathematician)
Nikolai Nikolayevich Vorobyov (also Vorobiev) (russian: Николай Николаевич Воробьёв, 18 September 1925, Leningrad — July 14, 1995) was a Soviet and Russian mathematician, an expert in the field of abstract algebra, mathematical logic and probability theory, the founder of the Soviet school of game theory. He is an author of two textbooks, three monographs, a large number of mathematical articles and a number of popular science books. He supervised over 30 kandidat and D.Sc (habilitation) dissertations.Николай Николаевич Воробьев
a biography at the

If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Reviews
''Mathematical Reviews'' is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also publishes an associated online bibliographic database called MathSciNet which contains an electronic version of ''Mathematical Reviews'' and additionally contains citation information for over 3.5 million items as of 2018. Reviews Mathematical Reviews was founded by Otto E. Neugebauer in 1940 as an alternative to the German journal ''Zentralblatt für Mathematik'', which Neugebauer had also founded a decade earlier, but which under the Nazis had begun censoring reviews by and of Jewish mathematicians. The goal of the new journal was to give reviews of every mathematical research publication. As of November 2007, the ''Mathematical Reviews'' database contained information on over 2.2 million articles. The authors of reviews are volunteers, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conditional Proof
A conditional proof is a proof that takes the form of asserting a conditional, and proving that the antecedent of the conditional necessarily leads to the consequent. Overview The assumed antecedent of a conditional proof is called the conditional proof assumption (CPA). Thus, the goal of a conditional proof is to demonstrate that if the CPA were true, then the desired conclusion necessarily follows. The validity of a conditional proof does not require that the CPA be true, only that ''if it were true'' it would lead to the consequent. Conditional proofs are of great importance in mathematics. Conditional proofs exist linking several otherwise unproven conjectures, so that a proof of one conjecture may immediately imply the validity of several others. It can be much easier to show a proposition's truth to follow from another proposition than to prove it independently. A famous network of conditional proofs is the NP-complete class of complexity theory. There is a large num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Green–Tao Theorem
In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number ''k'', there exist arithmetic progressions of primes with ''k'' terms. The proof is an extension of Szemerédi's theorem. The problem can be traced back to investigations of Lagrange and Waring from around 1770.. Statement Let \pi(N) denote the number of primes less than or equal to N. If A is a subset of the prime numbers such that : \limsup_ \frac>0, then for all positive integers k, the set A contains infinitely many arithmetic progressions of length k. In particular, the entire set of prime numbers contains arbitrarily long arithmetic progressions. In their later work on the generalized Hardy–Littlewood conjecture, Green and Tao stated and conditionally proved the asymptotic formula : (\mathfrak_k + o(1))\frac for the number of ''k'' tuples of primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then without knowing the value of ''n'', we can determine that the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if ''n'' is a natural number less than 105, then 23 is the only possible value of ''n''. The earliest known statement of the theorem is by the Chinese mathematician Sun-tzu in the '' Sun-tzu Suan-ching'' in the 3rd century CE. The Chinese remainder theorem is widely used for computing with lar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege. Gödel published his first incompleteness theorem in 1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Leon Post
Emil Leon Post (; February 11, 1897 – April 21, 1954) was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory. Life Post was born in Augustów, Suwałki Governorate, Congress Poland, Russian Empire (now Poland) into a Polish-Jewish family that immigrated to New York City in May 1904. His parents were Arnold and Pearl Post. Post had been interested in astronomy, but at the age of twelve lost his left arm in a car accident. This loss was a significant obstacle to being a professional astronomer, leading to his decision to pursue mathematics rather than astronomy. Post attended the Townsend Harris High School and continued on to graduate from City College of New York in 1917 with a B.S. in Mathematics. After completing his Ph.D. in mathematics in 1920 at Columbia University, supervised by Cassius Jackson Keyser, he did a post-doctorate at Princeton University in the 1920–1921 academic year. Pos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MRDP Theorem
In mathematics, a Diophantine equation is an equation of the form ''P''(''x''1, ..., ''x''''j'', ''y''1, ..., ''y''''k'') = 0 (usually abbreviated ''P''(', ') = 0) where ''P''(', ') is a polynomial with integer coefficients, where ''x''1, ..., ''x''''j'' indicate parameters and ''y''1, ..., ''y''''k'' indicate unknowns. A Diophantine set is a subset ''S'' of \mathbb^j, the set of all ''j''-tuples of natural numbers, so that for some Diophantine equation ''P''(', ') = 0, :\bar \in S \iff (\exists \bar \in \mathbb^)(P(\bar,\bar)=0) . That is, a parameter value is in the Diophantine set ''S'' if and only if the associated Diophantine equation is satisfiable under that parameter value. The use of natural numbers both in ''S'' and the existential quantification merely reflects the usual applications in computability and model theory. It does not matter whether natural numbers refer to the set of nonnegative integers or positive integers since the two definitions for Diophantine set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]