HOME
*



picture info

High Luminosity Large Hadron Collider
The High Luminosity Large Hadron Collider (HL-LHC; formerly referred to as HiLumi LHC) is an upgrade to the Large Hadron Collider, operated by the European Organization for Nuclear Research (CERN), located at the French-Swiss border near Geneva. From 2011 to 2020, the project was led by Lucio Rossi. In 2020, the lead role was taken up by Oliver Brüning. The upgrade started as a design study in 2010, for which a European Framework Program 7 grant was allocated in 2011, with goal of boosting the accelerator's potential for new discoveries in physics. The design study was approved by the CERN Council in 2016 and HL-LHC became a full-fledged CERN project. The upgrade work is currently in progress and physics experiments are expected to start taking data at the earliest in 2028. The HL-LHC project will deliver proton-proton collisions at 14 TeV with an integrated luminosity of for both ATLAS and CMS experiments, for LHCb, and for ALICE. In the heavy-ion sector, the integra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Hadron Collider
The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel in circumference and as deep as beneath the France–Switzerland border near Geneva. The first collisions were achieved in 2010 at an energy of 3.5 teraelectronvolts (TeV) per beam, about four times the previous world record. After upgrades it reached 6.5 TeV per beam (13 TeV total collision energy). At the end of 2018, it was shut down for three years for further upgrades. The collider has four crossing points where the accelerated particles collide. Seven detectors, each designed to detect different phenomena, are positioned around the crossing points. The LHC primarily collides proton beams, but it can also accelerate beams of heavy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Collider
A collider is a type of particle accelerator which brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators. Colliders are used as a research tool in particle physics by accelerating particles to very high kinetic energy and letting them impact other particles. Analysis of the byproducts of these collisions gives scientists good evidence of the structure of the subatomic world and the laws of nature governing it. These may become apparent only at high energies and for tiny periods of time, and therefore may be hard or impossible to study in other ways. Explanation In particle physics one gains knowledge about elementary particles by accelerating particles to very high kinetic energy and letting them impact on other particles. For sufficiently high energy, a reaction occurs that transforms the particles into other particles. Detecting these products gives insight into the physics involved. To ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics. Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in relativistic quantum field theory, particles with integer spin are bosons. In contrast, particles with half-integer spin are fermions. In addition to the spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore, what is usually referred to as the spin-statistics relation is, in fact, a spin statistics-quantum nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Top Quark
The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab. Like all other quarks, the top quark is a fermion with spin and participates in all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. It has an electric charge of +  ''e''. It has a mass of , which is close to the rhenium atom mass. The antiparticle of the top quark is the top antiquark (symbol: , sometimes called ''antitop quark'' or simply ''antitop''), which differs from it only in that some of its properties have equal magnitude but opposite sign. The top quark interacts with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cabibbo–Kobayashi–Maskawa Matrix
In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix which contains information on the strength of the flavour-changing weak interaction. Technically, it specifies the mismatch of quantum states of quarks when they propagate freely and when they take part in the weak interactions. It is important in the understanding of CP violation. This matrix was introduced for three generations of quarks by Makoto Kobayashi and Toshihide Maskawa, adding one generation to the matrix previously introduced by Nicola Cabibbo. This matrix is also an extension of the GIM mechanism, which only includes two of the three current families of quarks. The matrix Predecessor – the Cabibbo matrix In 1963, Nicola Cabibbo introduced the Cabibbo angle () to preserve the universality of the weak interaction. Cabibbo was inspired by previous work by Murray Gell-Mann and Maurice Lévy, on the effectively ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Mechanism
In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property " mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/''c''2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) that permeates all space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

QCD Matter
Quark matter or QCD matter ( quantum chromodynamic) refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic. Quarks are liberated into quark matter at extremely high temperatures and/or densities, and some of them are still only theoretical as they require conditions so extreme that they cannot be produced in any laboratory, especially not at equilibrium conditions. Under these extreme conditions, the familiar structure of matter, where the basic constituents are nuclei (consisting of nucleons which are bound states of quarks) and electrons, is disrupted. In quark matter it is more appropriate to treat the quarks themselves as the basic degrees of freedom. In the standard model of particle physics, the strong force is described by the theory of QCD. At ordinary temperatures or densities this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge, that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its " Mexican hat-shaped" potential leads it to take a nonzero value ''everywhere'' (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles. Both the field and the boson are named after physicist Peter Higgs, who in 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lepton
In particle physics, a lepton is an elementary particle of half-integer spin (spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron. There are six types of leptons, known as '' flavours'', grouped in three ''generations''. The first-generation leptons, also called ''electronic leptons'', comprise the electron () and the electron neutrino (); the second are the ''muonic leptons'', comprising the muon () and the muon neutrino (); and the third are the ''tauonic leptons'', comprising the tau () and the tau neutrino (). Electrons have the least mass of all the charged leptons. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as '' color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flavour (particle Physics)
In particle physics, flavour or flavor refers to the ''species'' of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with ''flavour quantum numbers'' that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations. Quantum numbers In classical mechanics, a force acting on a point-like particle can only alter the particle's dynamical state, i.e., its momentum, angular momentum, etc. Quantum field theory, however, allows interactions that can alter other facets of a particle's nature described by non dynamical, discrete quantum numbers. In particular, the action of the weak force is such that it allows the conversion of quantum numbers describing mass and electric charge of both quarks and leptons from one discrete type to another. This is known as a flavour change, or flavour transmutation. Due to their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]