Hering Illusion
   HOME
*



picture info

Hering Illusion
The Hering illusion is one of the geometrical-optical illusions and was discovered by the German physiologist Ewald Hering in 1861. When two straight and parallel lines are presented in front of radial background (like the spokes of a bicycle), the lines appear as if they were bowed outwards. The Orbison illusion is one of its variants, while the Wundt illusion produces a similar, but inverted effect. There are several possible explanations for why perceptual distortion produced by the radiating pattern. The illusion was ascribed by Hering to an overestimation of the angle made at the points of intersection. If true, then the straightness of the parallel lines yields to that of the radiating lines, implying that there is a hierarchical ordering among components of such illusion. Others have suggested that angle overestimation results from lateral inhibition in visual cortex, while others have postulated a bias inherent in extrapolating 3D angle information from 2D projections. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hering Illusion
The Hering illusion is one of the geometrical-optical illusions and was discovered by the German physiologist Ewald Hering in 1861. When two straight and parallel lines are presented in front of radial background (like the spokes of a bicycle), the lines appear as if they were bowed outwards. The Orbison illusion is one of its variants, while the Wundt illusion produces a similar, but inverted effect. There are several possible explanations for why perceptual distortion produced by the radiating pattern. The illusion was ascribed by Hering to an overestimation of the angle made at the points of intersection. If true, then the straightness of the parallel lines yields to that of the radiating lines, implying that there is a hierarchical ordering among components of such illusion. Others have suggested that angle overestimation results from lateral inhibition in visual cortex, while others have postulated a bias inherent in extrapolating 3D angle information from 2D projections. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrical-optical Illusions
Geometrical-optical illusions are visual illusions, also optical illusions, in which the geometrical properties of what is seen differ from those of the corresponding objects in the visual field. Geometrical properties In studying geometry one concentrates on the position of points and on the length, orientation and curvature of lines. Geometrical-optical illusions then relate in the first instance to object characteristics as defined by geometry. Though vision is three-dimensional, in many situations depth can be factored out and attention concentrated on a simple view of a two-dimensional tablet with its x and y co-ordinates.' Illusions are in visual space Whereas their counterparts in the observer's object space are public and have measurable properties, the illusions themselves are private to the observer's (human or animal) experience. Nevertheless, they are accessible to portrayal by verbal and other communication and even to measurement by psychophysics. A nulling techniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ewald Hering
Karl Ewald Konstantin Hering (5 August 1834 – 26 January 1918) was a German physiologist who did much research into color vision, binocular perception and eye movements. He proposed opponent color theory in 1892. Born in Alt-Gersdorf, Kingdom of Saxony, Hering studied at the University of Leipzig and became the first rector of the German Charles-Ferdinand University in Prague. Biography Early years Hering was born in Altgersdorf in Saxony, Germany. He probably grew up in a poor family, son of a Lutheran pastor. Hering attended gymnasium in Zittau and entered the university of Leipzig in 1853. There he studied philosophy, zoology and medicine. He completed an M.D. degree in 1860. It is somewhat unclear how Hering trained to do research. At the time Johannes Peter Müller was perhaps the most famous physiologist in Germany. Hering seems to have applied for studying under his direction but was rejected, which might have contributed to his animosity towards Hermann von H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orbison Illusion
The Orbison illusion (or Orbison's illusion) is an optical illusion first described by American psychologist William Orbison (1912–1952) in 1939. The illusion consists of a two dimensional figure, such as a circle or square, superimposed over a background of radial lines or concentric circles. The result is an optical illusion in which both the figure and the rectangle which contains it appear distorted; in particular, squares appear slightly bulged, circles appear elliptical Elliptical may mean: * having the shape of an ellipse, or more broadly, any oval shape ** in botany, having an elliptic leaf shape ** of aircraft wings, having an elliptical planform * characterised by ellipsis (the omission of words), or by conc ..., and the containing rectangle appears tilted. References * * Optical illusions {{psych-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wundt Illusion
The Wundt illusion is an optical illusion that was first described by the German psychologist Wilhelm Wundt in the 19th century. The two red vertical lines are both straight, but they may look as if they are bowed inwards to some observers. The distortion is induced by the crooked lines on the background, as in the Orbison illusion. The Hering illusion The Hering illusion is one of the geometrical-optical illusions and was discovered by the German physiologist Ewald Hering in 1861. When two straight and parallel lines are presented in front of radial background (like the spokes of a bicycle), t ... produces a similar, but inverted effect. Vertical-horizontal illusion Another variant of the Wundt illusion is the '' Horizontal–Vertical Illusion'', introduced by Wundt in 1858. The two intersecting lines are equal in length although the vertical line appears to be much longer. The horizontal line needs to be extended up to 30% to match the perceptual length of the vertical lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lateral Inhibition
In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral direction. This creates a contrast in stimulation that allows increased sensory perception. It is also referred to as lateral antagonism and occurs primarily in visual processes, but also in tactile, auditory, and even olfactory processing. Cells that utilize lateral inhibition appear primarily in the cerebral cortex and thalamus and make up lateral inhibitory networks (LINs). Artificial lateral inhibition has been incorporated into artificial sensory systems, such as vision chips, hearing systems, and optical mice. An often under-appreciated point is that although lateral inhibition is visualised in a spatial sense, it is also thought to exist in what is known as "lateral inhibition across abstract dimensions." This refers to lateral inhibition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Primary Visual Cortex
The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 ( V1), Brodmann area 17, or the striate cortex. The extrastriate areas consist of visual areas 2, 3, 4, and 5 (also known as V2, V3, V4, and V5, or Brodmann area 18 and all Brodmann area 19). Both hemispheres of the brain include a visual cortex; the visual cortex in the left hemisphere receives signals from the right visual field, and the visual cortex in the right hemisphere receives signals from the left visual field. Introduction The primary visual cortex (V1) is located in and around the calcarine fissure in the occipital lobe. Each hemisphere's V1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]