Henyey Track
   HOME
*



picture info

Henyey Track
The Henyey track is a path taken by pre-main-sequence stars with masses greater than 0.5 solar masses in the Hertzsprung–Russell diagram after the end of the Hayashi track. The astronomer Louis G. Henyey and his colleagues in the 1950s showed that the pre-main-sequence star can remain in radiative equilibrium throughout some period of its contraction to the main sequence. The Henyey track is characterized by a slow collapse in near hydrostatic equilibrium, approaching the main sequence almost horizontally in the Hertzsprung–Russell diagram (i.e. the luminosity remains almost constant). See also * Historical brightest stars * List of brightest stars * List of most luminous stars * List of nearest bright stars * List of Solar System objects in hydrostatic equilibrium * Stellar evolution * Stellar birthline * Stellar isochrone In stellar evolution, an isochrone is a curve on the Hertzsprung-Russell diagram, representing a population of stars of the same age but wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PMS Evolution Tracks
Premenstrual syndrome (PMS) refers to emotional and physical symptoms that regularly occur in the one to two weeks before the start of each menstrual period. Symptoms resolve around the time menstrual bleeding begins. Different women experience different symptoms. Premenstrual syndrome is commonly noted by at least one physical, emotional, or behavioral symptom, that resolves with menses. The range of symptoms is wide, and most commonly are breast tenderness, bloating, headache, mood swings, depression, anxiety, anger, and irritability. They must interfere with daily living, during two menstrual cycles of prospective recording. These symptoms are nonspecific and may be seen in women without PMS. Often PMS-related symptoms are present for about six days. An individual's pattern of symptoms may change over time. Symptoms do not occur during pregnancy or following menopause.> Diagnosis requires a consistent pattern of emotional and physical symptoms occurring after ovulation and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Historical Brightest Stars
The Solar System and all of the visible stars are in different orbits about the core of the Milky Way galaxy. Thus, their relative positions change over time, and for the nearer stars this movement can be measured. As a star moves toward or away from us, its apparent brightness changes. Sirius is currently the brightest star in Earth's night sky, but it has not always been so. Canopus has persistently been the brightest star over the ages; other stars appear brighter only during relatively temporary periods, during which they are passing the Solar System at a much closer distance than Canopus. Working out exactly which stars were or will be the brightest at any given point in the past or future is difficult since it requires precise 3D proper motions of large numbers of stars and precise distances. This information only started to become available with the 1997 ''Hipparcos'' satellite data release. Jocelyn Tomkin used this data to compile a list of brightest star in Earth's nigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stellar Birthline
The stellar birthline is a predicted line on the Hertzsprung–Russell diagram that relates the effective temperature and luminosity of pre-main-sequence stars at the start of their contraction. Prior to this point, the objects are accreting protostars, and are so deeply embedded in the cloud of dust and gas from which they are forming that they radiate only in far infrared and millimeter wavelengths. Once stellar winds disperse this cloud, the star becomes visible as a pre-main-sequence object. The set of locations on the Hertzsprung–Russell diagram where these newly visible stars reside is called the ''birthline'', and is found above the main sequence. The location of the stellar birthline depends in detail on the accretion rate onto the star and geometry of this accretion, i.e. whether or not it is occurring through an accretion disk. This means that the birthline is not an infinitely thin curve, but has a finite thickness in the Hertzsprung-Russell diagram. See also * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star. Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance of atoms at the core becomes helium, stars like the Sun begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing throug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Solar System Objects In Hydrostatic Equilibrium
This is a list of most likely gravitationally rounded objects of the Solar System, which are objects that have a rounded, ellipsoidal shape due to their own gravity (but are not necessarily in hydrostatic equilibrium). Apart from the Sun itself, these objects qualify as planets according to common geophysical definitions of that term. The sizes of these objects range over three orders of magnitude in radius, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies, but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined. The Sun's orbital characteristics are listed in relation to the Galactic Center, while all other objects are listed in order of their distance from the Sun. Star The Sun is a G-type main-sequence star. It contains almost 99.9% of all the mass in the Solar System. Major planets In 2006, the International Astronomical Un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Nearest Bright Stars
This list of nearest bright stars is a table of stars found within 15 parsecs (48.9 light-years) of the nearest star, the Sun, that have an absolute magnitude of +8.5 or brighter, which is approximately comparable to a listing of stars more luminous than a red dwarf. Right ascension and declination coordinates are for the epoch J2000. The distance measurements are based on the Hipparcos Catalogue and other astrometric data. In the event of a spectroscopic binary, the combined spectral type and absolute magnitude are listed in ''italics''. The list is ordered by increasing distance. Stars within 10 parsecs These stars are estimated to be within 32.6 light years of the Sun. Stars between 10 and 13 parsecs These stars are estimated to be from 32.7 to 42.4 light years distant from the Sun. Stars between 13 and 15 parsecs These stars are estimated to be from 42.5 to 48.9 light years distant from the Sun. A value of 48.9 light years corresponds to a minimum parallax of 66.7 mas. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Most Luminous Stars
This is a list of stars arranged by their absolute magnitude – their intrinsic stellar luminosity. This cannot be observed directly, so instead must be calculated from the apparent magnitude (the brightness as seen from Earth), the distance to each star, and a correction for interstellar extinction. The entries in the list below are further corrected to provide the bolometric magnitude, i.e. integrated over all wavelengths; this relies upon measurements in multiple photometric filters and extrapolation of the stellar spectrum based on the stellar spectral type and/or effective temperature. Entries give the bolometric luminosity in multiples of the luminosity of the Sun () and the bolometric absolute magnitude. As with all magnitude systems in astronomy, the latter scale is logarithmic and inverted i.e. more negative numbers are more luminous. Most stars on this list are not bright enough to be visible to the naked eye from Earth, because of their high distances, high exti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Brightest Stars
This is a list of stars arranged by their apparent magnitude – their brightness as observed from Earth. It includes all stars brighter than magnitude +2.50 in visible light, measured using a ''V''-band filter in the UBV photometric system. Stars in binary systems (or other multiples) are listed by their ''total'' or ''combined'' brightness if they appear as a single star to the naked eye, or listed separately if they do not. As with all magnitude systems in astronomy, the scale is logarithmic and inverted i.e. lower/more negative numbers are brighter. Most stars on this list appear bright from Earth because they are nearby, not because they are intrinsically luminous. For a list which compensates for the distances, converting the ''apparent'' magnitude to the ''absolute'' magnitude, see the list of most luminous stars. Measurement The Sun is the brightest star as viewed from Earth, at −26.74 mag. The second brightest is Sirius at −1.46 mag. For c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Luminosity
Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical object. In SI units, luminosity is measured in joules per second, or watts. In astronomy, values for luminosity are often given in the terms of the luminosity of the Sun, ''L''⊙. Luminosity can also be given in terms of the astronomical magnitude system: the absolute bolometric magnitude (''M''bol) of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band. In contrast, the term ''brightness'' in astronomy is generally used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the lumin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pre-main-sequence Star
A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope of interstellar dust and gas. After the protostar blows away this envelope, it is optically visible, and appears on the stellar birthline in the Hertzsprung-Russell diagram. At this point, the star has acquired nearly all of its mass but has not yet started hydrogen burning (i.e. nuclear fusion of hydrogen). The star then contracts, its internal temperature rising until it begins hydrogen burning on the zero age main sequence. This period of contraction is the pre-main sequence stage. An observed PMS object can either be a T Tauri star, if it has fewer than 2 solar masses (), or else a Herbig Ae/Be star, if it has 2 to 8 . Yet more massive stars have no pre-main-sequence stage because they contract too quickly as protostars. By the time th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrostatic Equilibrium
In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. Hydrostatic equilibrium is the distinguishing criterion between dwarf planets and small solar system bodies, and features in astrophysics and planetary geology. Said qualification of equilibrium indicates that the shape of the object is symmetrically ellipsoid, where any irregular surface features are consequent to a relatively thin solid crust. In addition to the Sun, there are a dozen or so equilibrium objects confirmed to exist in the Solar System. Mathematical consideration For a hydrostatic fluid on Ear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radiative Equilibrium
Radiative equilibrium is the condition where the total thermal radiation leaving an object is equal to the total thermal radiation entering it. It is one of the several requirements for thermodynamic equilibrium, but it can occur in the absence of thermodynamic equilibrium. There are various types of radiative equilibrium, which is itself a kind of dynamic equilibrium. Definitions Equilibrium, in general, is a state in which opposing forces are balanced, and hence a system does not change in time. Radiative equilibrium is the specific case of thermal equilibrium, for the case in which the exchange of heat is done by radiative heat transfer. There are several types of radiative equilibrium. Prevost's definitions An important early contribution was made by Pierre Prevost in 1791. Prevost considered that what is nowadays called the photon gas or electromagnetic radiation was a fluid that he called "free heat". Prevost proposed that free radiant heat is a very rare fluid, rays of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]