Helly Metric
   HOME
*





Helly Metric
In game theory, the Helly metric is used to assess the distance between two strategies. It is named for Eduard Helly. Consider a game \Gamma=\left\langle\mathfrak,\mathfrak,H\right\rangle, between player I and II. Here, \mathfrak and \mathfrak are the sets of pure strategies for players I and II respectively; and H=H(\cdot,\cdot) is the payoff function. (in other words, if player I plays x\in\mathfrak and player II plays y\in\mathfrak, then player I pays H(x,y) to player II). The Helly metric \rho(x_1,x_2) is defined as : \rho(x_1,x_2)=\sup_\left, H(x_1,y)-H(x_2,y)\. The metric so defined is symmetric, reflexive, and satisfies the triangle inequality. The Helly metric measures distances between strategies, not in terms of the differences between the strategies themselves, but in terms of the consequences of the strategies. Two strategies are distant if their payoffs are different. Note that \rho(x_1,x_2)=0 does not imply x_1=x_2 but it does imply that the ''consequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Game Theory
Game theory is the study of mathematical models of strategic interactions among rational agents. Myerson, Roger B. (1991). ''Game Theory: Analysis of Conflict,'' Harvard University Press, p.&nbs1 Chapter-preview links, ppvii–xi It has applications in all fields of social science, as well as in logic, systems science and computer science. Originally, it addressed two-person zero-sum games, in which each participant's gains or losses are exactly balanced by those of other participants. In the 21st century, game theory applies to a wide range of behavioral relations; it is now an umbrella term for the science of logical decision making in humans, animals, as well as computers. Modern game theory began with the idea of mixed-strategy equilibria in two-person zero-sum game and its proof by John von Neumann. Von Neumann's original proof used the Brouwer fixed-point theorem on continuous mappings into compact convex sets, which became a standard method in game theory and mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strategy (game Theory)
In game theory, a player's strategy is any of the options which they choose in a setting where the outcome depends ''not only'' on their own actions ''but'' on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship. A player's strategy will determine the action which the player will take at any stage of the game. In studying game theory, economists enlist a more rational lens in analyzing decisions rather than the psychological or sociological perspectives taken when analyzing relationships between decisions of two or more parties in different disciplines. The strategy concept is sometimes (wrongly) confused with that of a move. A move is an action taken by a player at some point during the play of a game (e.g., in chess, moving white's Bishop a2 to b3). A strategy on the other hand is a complete algorithm for p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eduard Helly
Eduard Helly (June 1, 1884 in Vienna – 28 November 1943 in Chicago) was a mathematician after whom Helly's theorem, Helly families, Helly's selection theorem, Helly metric, and the Helly–Bray theorem were named. Life Helly earned his doctorate from the University of Vienna in 1907, with two advisors, Wilhelm Wirtinger and Franz Mertens. He then continued his studies for another year at the University of Göttingen. Richard Courant, also studying there at the same time, tells a story of Helly disrupting one of Courant's talks, which fortunately did not prevent David Hilbert from eventually hiring Courant as an assistant. After returning to Vienna, Helly worked as a tutor, Gymnasium teacher, and textbook editor until World War I, when he enlisted in the Austrian army. He was shot in 1915, and spent the rest of the war as a prisoner of the Russians. In one prison camp in Berezovka, Siberia, he organized a mathematical seminar in which Tibor Radó, then an engineer, began his int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pure Strategy
In game theory, a player's strategy is any of the options which they choose in a setting where the outcome depends ''not only'' on their own actions ''but'' on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship. A player's strategy will determine the action which the player will take at any stage of the game. In studying game theory, economists enlist a more rational lens in analyzing decisions rather than the psychological or sociological perspectives taken when analyzing relationships between decisions of two or more parties in different disciplines. The strategy concept is sometimes (wrongly) confused with that of a move. A move is an action taken by a player at some point during the play of a game (e.g., in chess, moving white's Bishop a2 to b3). A strategy on the other hand is a complete algorithm for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle Inequality
In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but some authors, especially those writing about elementary geometry, will exclude this possibility, thus leaving out the possibility of equality. If , , and are the lengths of the sides of the triangle, with no side being greater than , then the triangle inequality states that :z \leq x + y , with equality only in the degenerate case of a triangle with zero area. In Euclidean geometry and some other geometries, the triangle inequality is a theorem about distances, and it is written using vectors and vector lengths ( norms): :\, \mathbf x + \mathbf y\, \leq \, \mathbf x\, + \, \mathbf y\, , where the length of the third side has been replaced by the vector sum . When and are real numbers, they can be viewed as vectors in , and the trian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Topology
In any domain of mathematics, a space has a natural topology if there is a topology on the space which is "best adapted" to its study within the domain in question. In many cases this imprecise definition means little more than the assertion that the topology in question arises ''naturally'' or ''canonically'' (see mathematical jargon) in the given context. Note that in some cases multiple topologies seem "natural". For example, if ''Y'' is a subset of a totally ordered set ''X'', then the induced order topology, i.e. the order topology of the totally ordered ''Y'', where this order is inherited from ''X'', is coarser than the subspace topology of the order topology of ''X''. "Natural topology" does quite often have a more specific meaning, at least given some prior contextual information: the natural topology is a topology which makes a natural map or collection of maps continuous. This is still imprecise, even once one has specified what the natural maps are, because there ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Totally Bounded Space
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size” (where the meaning of “size” depends on the structure of the ambient space). The term precompact (or pre-compact) is sometimes used with the same meaning, but precompact is also used to mean relatively compact. These definitions coincide for subsets of a complete metric space, but not in general. In metric spaces A metric space (M,d) is ''totally bounded'' if and only if for every real number \varepsilon > 0, there exists a finite collection of open balls in ''M'' of radius \varepsilon whose union contains . Equivalently, the metric space ''M'' is totally bounded if and only if for every \varepsilon >0, there exists a finite cover such that the radius of each element of the cover is at most \varepsilon. This is equivale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]