Hanner Polytope
   HOME
*



picture info

Hanner Polytope
In geometry, a Hanner polytope is a convex polytope constructed recursively by Cartesian product and polar dual operations. Hanner polytopes are named after Olof Hanner, who introduced them in 1956.. Construction The Hanner polytopes are constructed recursively by the following rules:. *A line segment is a one-dimensional Hanner polytope *The Cartesian product of every two Hanner polytopes is another Hanner polytope, whose dimension is the sum of the dimensions of the two given polytopes *The dual of a Hanner polytope is another Hanner polytope of the same dimension. They are exactly the polytopes that can be constructed using only these rules: that is, every Hanner polytope can be formed from line segments by a sequence of product and dual operations. Alternatively and equivalently to the polar dual operation, the Hanner polytopes may be constructed by Cartesian products and direct sums, the dual of the Cartesian products. This direct sum operation combines two polytopes by placin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of Three
In mathematics, a power of three is a number of the form where is an integer – that is, the result of exponentiation with number three as the base and integer  as the exponent. Applications The powers of three give the place values in the ternary numeral system. In graph theory, powers of three appear in the Moon–Moser bound on the number of maximal independent sets of an -vertex graph, and in the time analysis of the Bron–Kerbosch algorithm for finding these sets. Several important strongly regular graphs also have a number of vertices that is a power of three, including the Brouwer–Haemers graph (81 vertices), Berlekamp–van Lint–Seidel graph (243 vertices), and Games graph (729 vertices). In enumerative combinatorics, there are signed subsets of a set of elements. In polyhedral combinatorics, the hypercube and all other Hanner polytopes have a number of faces (not counting the empty set as a face) that is a power of three. For example, a , or square, ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Discrete & Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * ''Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents''/Engineering, Computing and Technology Notable articles The articles by Gil Kalai with a proof of a subexponential upper bound on the diameter of a polyhedron and by Samuel Ferguson on the Kepler conjecture, both published in Discrete & Computational geometry, earned their author the Fulkerson Prize The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at e .... References External link ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Series–parallel Graph
In graph theory, series–parallel graphs are graphs with two distinguished vertices called ''terminals'', formed recursively by two simple composition operations. They can be used to model series and parallel electric circuits. Definition and terminology In this context, the term graph means multigraph. There are several ways to define series–parallel graphs. The following definition basically follows the one used by David Eppstein. A two-terminal graph (TTG) is a graph with two distinguished vertices, ''s'' and ''t'' called ''source'' and ''sink'', respectively. The parallel composition ''Pc = Pc(X,Y)'' of two TTGs ''X'' and ''Y'' is a TTG created from the disjoint union of graphs ''X'' and ''Y'' by merging the sources of ''X'' and ''Y'' to create the source of ''Pc'' and merging the sinks of ''X'' and ''Y'' to create the sink of ''Pc''. The series composition ''Sc = Sc(X,Y)'' of two TTGs ''X'' and ''Y'' is a TTG created from the disjoint union of graphs ''X'' and ''Y'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Graph
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acta Mathematica
''Acta Mathematica'' is a peer-reviewed open-access scientific journal covering research in all fields of mathematics. According to Cédric Villani, this journal is "considered by many to be the most prestigious of all mathematical research journals".. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 4.273, ranking it 5th out of 330 journals in the category "Mathematics". Publication history The journal was established by Gösta Mittag-Leffler in 1882 and is published by Institut Mittag-Leffler, a research institute for mathematics belonging to the Royal Swedish Academy of Sciences. The journal was printed and distributed by Springer from 2006 to 2016. Since 2017, Acta Mathematica has been published electronically and in print by International Press. Its electronic version is open access without publishing fees. Poincaré episode The journal's "most famous episode" (according to Villani) concerns Henri Poincaré, who won a prize offered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Helly Family
In combinatorics, a Helly family of order is a family of sets in which every minimal ''subfamily with an empty intersection'' has or fewer sets in it. Equivalently, every finite subfamily such that every -fold intersection is non-empty has non-empty total intersection.. The -Helly property is the property of being a Helly family of order .. See in particular Section 2.5, "Helly Property"pp. 393–394 The number is frequently omitted from these names in the case that . Thus, a set-family has the Helly property if, for every sets s_1,\ldots,s_n in the family, if \forall i,j\in s_i \cap s_j \neq\emptyset , then s_1 \cap \cdots \cap s_n \neq\emptyset . These concepts are named after Eduard Helly (1884–1943); Helly's theorem on convex sets, which gave rise to this notion, states that convex sets in Euclidean space of dimension are a Helly family of order . Examples * In the family of all subsets of the set , the subfamily has an empty intersection, but removing any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parallelepiped
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. In Euclidean geometry, the four concepts—''parallelepiped'' and ''cube'' in three dimensions, ''parallelogram'' and ''square'' in two dimensions—are defined, but in the context of a more general affine geometry, in which angles are not differentiated, only ''parallelograms'' and ''parallelepipeds'' exist. Three equivalent definitions of ''parallelepiped'' are *a polyhedron with six faces (hexahedron), each of which is a parallelogram, *a hexahedron with three pairs of parallel faces, and *a prism of which the base is a parallelogram. The rectangular cuboid (six rectangular faces), cube (six square faces), and the rhombohedron (six rhombus faces) are all specific cases of parallelepiped. "Parallelepiped" is now usually pronounced or ; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Body
In mathematics, a convex body in n-dimensional Euclidean space \R^n is a compact convex set with non-empty interior. A convex body K is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point x lies in K if and only if its antipode, - x also lies in K. Symmetric convex bodies are in a one-to-one correspondence with the unit balls of norms on \R^n. Important examples of convex bodies are the Euclidean ball, the hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ... and the cross-polytope. See also * * References * {{Authority control Multi-dimensional geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mahler Conjecture
In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube. Definition A convex body in Euclidean space is defined as a compact convex set with non-empty interior. If B is a centrally symmetric convex body in n-dimensional Euclidean space, the polar body B^\circ is another centrally symmetric body in the same space, defined as the set \left\. The Mahler volume of B is the product of the volumes of B and B^\circ.. If T is an invertible linear transformation, then (TB)^\circ = (T^)^\ast B^\circ. Applying T to B multiplies its volume by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mahler Volume
In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube. Definition A convex body in Euclidean space is defined as a compact convex set with non-empty interior. If B is a centrally symmetric convex body in n-dimensional Euclidean space, the polar body B^\circ is another centrally symmetric body in the same space, defined as the set \left\. The Mahler volume of B is the product of the volumes of B and B^\circ.. If T is an invertible linear transformation, then (TB)^\circ = (T^)^\ast B^\circ. Applying T to B multiplies its volume by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Prism
In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A uniform triangular prism is a right triangular prism with equilateral bases, and square sides. Equivalently, it is a polyhedron of which two faces are parallel, while the surface normals of the other three are in the same plane (which is not necessarily parallel to the base planes). These three faces are parallelograms. All cross-sections parallel to the base faces are the same triangle. As a semiregular (or uniform) polyhedron A right triangular prism is semiregular or, more generally, a uniform polyhedron if the base faces are equilateral triangles, and the other three faces are squares. It can be seen as a truncated trigonal hosohedron, represented by Schläfli symbol t. Alternately it can be seen as the Cartesian product of a triangle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]