Hankel Matrix
   HOME
*





Hankel Matrix
In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.: \qquad\begin a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \\ \end. More generally, a Hankel matrix is any n \times n matrix A of the form A = \begin a_ & a_ & a_ & \ldots & \ldots &a_ \\ a_ & a_2 & & & &\vdots \\ a_ & & & & & \vdots \\ \vdots & & & & & a_\\ \vdots & & & & a_& a_ \\ a_ & \ldots & \ldots & a_ & a_ & a_ \end. In terms of the components, if the i,j element of A is denoted with A_, and assuming i\le j, then we have A_ = A_ for all k = 0,...,j-i. Properties * The Hankel matrix is a symmetric matrix. * Let J_n be the n \times n exchange matrix. If H is a m \times n Hankel matrix, then H = T J_n where T is a m \times n Toeplitz matrix. ** If T is real symmetric, then H = T J_n will have the same eigenvalues as T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Value Decomposition
In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any \ m \times n\ matrix. It is related to the polar decomposition. Specifically, the singular value decomposition of an \ m \times n\ complex matrix is a factorization of the form \ \mathbf = \mathbf\ , where is an \ m \times m\ complex unitary matrix, \ \mathbf\ is an \ m \times n\ rectangular diagonal matrix with non-negative real numbers on the diagonal, is an n \times n complex unitary matrix, and \ \mathbf\ is the conjugate transpose of . Such decomposition always exists for any complex matrix. If is real, then and can be guaranteed to be real orthogonal matrices; in such contexts, the SVD is often denoted \ \mathbf^\mathsf\ . The diagonal entries \ \sigma_i = \Sigma_\ of \ \mathbf\ are uniquely determined by and are known as the singular values of . The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birkhäuser
Birkhäuser was a Swiss publisher founded in 1879 by Emil Birkhäuser. It was acquired by Springer Science+Business Media in 1985. Today it is an imprint used by two companies in unrelated fields: * Springer continues to publish science (particularly: history of science, geosciences, computer science) and mathematics books and journals under the Birkhäuser imprint (with a leaf logo) sometimes called Birkhäuser Science. * Birkhäuser Verlag – an architecture and design publishing company was (re)created in 2010 when Springer sold its design and architecture segment to ACTAR. The resulting Spanish-Swiss company was then called ActarBirkhäuser. After a bankruptcy, in 2012 Birkhäuser Verlag was sold again, this time to De Gruyter. Additionally, the Reinach-based printer Birkhäuser+GBC operates independently of the above, being now owned by ''Basler Zeitung''. History The original Swiss publishers program focused on regional literature. In the 1920s the sons of Emil Birkhà ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Society For Industrial And Applied Mathematics
Society for Industrial and Applied Mathematics (SIAM) is a professional society dedicated to applied mathematics, computational science, and data science through research, publications, and community. SIAM is the world's largest scientific society devoted to applied mathematics, and roughly two-thirds of its membership resides within the United States. Founded in 1951, the organization began holding annual national meetings in 1954, and now hosts conferences, publishes books and scholarly journals, and engages in advocacy in issues of interest to its membership. Members include engineers, scientists, and mathematicians, both those employed in academia and those working in industry. The society supports educational institutions promoting applied mathematics. SIAM is one of the four member organizations of the Joint Policy Board for Mathematics. Membership Membership is open to both individuals and organizations. By the end of its first full year of operation, SIAM had 130 memb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard P
Richard is a male given name. It originates, via Old French, from Frankish language, Old Frankish and is a Compound (linguistics), compound of the words descending from Proto-Germanic language, Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include "Richie", "Dick (nickname), Dick", "Dickon", "Dickie (name), Dickie", "Rich (given name), Rich", "Rick (given name), Rick", "Rico (name), Rico", "Ricky (given name), Ricky", and more. Richard is a common English, German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Catalan "Ricard" and the Italian "Riccardo", among others (see comprehensive variant list below). People ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vandermonde Matrix
In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an matrix :V=\begin 1 & x_1 & x_1^2 & \dots & x_1^\\ 1 & x_2 & x_2^2 & \dots & x_2^\\ 1 & x_3 & x_3^2 & \dots & x_3^\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & x_m & x_m^2 & \dots & x_m^ \end, or :V_ = x_i^ \, for all indices and . Some authors define the Vandermonde matrix as the transpose of the above matrix. The determinant of a square Vandermonde matrix is called a ''Vandermonde polynomial'' or ''Vandermonde determinant''. Its value is the polynomial :\det(V) = \prod_ (x_j - x_i) which is non-zero if and only if all x_i are distinct. The Vandermonde determinant was sometimes called the ''discriminant'', although, presently, the discriminant of a polynomial is the square of the Vandermonde determinant of the roots of the polynomial. The Vandermonde determinant is an alternating form in the x_i, meaning that exchang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy Matrix
In mathematics, a Cauchy matrix, named after Augustin-Louis Cauchy, is an ''m''×''n'' matrix with elements ''a''''ij'' in the form : a_=;\quad x_i-y_j\neq 0,\quad 1 \le i \le m,\quad 1 \le j \le n where x_i and y_j are elements of a field \mathcal, and (x_i) and (y_j) are injective sequences (they contain ''distinct'' elements). The Hilbert matrix is a special case of the Cauchy matrix, where :x_i-y_j = i+j-1. \; Every submatrix of a Cauchy matrix is itself a Cauchy matrix. Cauchy determinants The determinant of a Cauchy matrix is clearly a rational fraction in the parameters (x_i) and (y_j). If the sequences were not injective, the determinant would vanish, and tends to infinity if some x_i tends to y_j. A subset of its zeros and poles are thus known. The fact is that there are no more zeros and poles: The determinant of a square Cauchy matrix A is known as a Cauchy determinant and can be given explicitly as : \det \mathbf=     (Schechter 1959, eqn 4; Cau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Matrix
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that :\mathbf = \mathbf = \mathbf_n \ where denotes the -by- identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix is uniquely determined by , and is called the (multiplicative) ''inverse'' of , denoted by . Matrix inversion is the process of finding the matrix that satisfies the prior equation for a given invertible matrix . A square matrix that is ''not'' invertible is called singular or degenerate. A square matrix is singular if and only if its determinant is zero. Singular matrices are rare in the sense that if a square matrix's entries are randomly selected from any finite region on the number line or complex plane, the probability that the matrix is singular is 0, that is, it will "almost never" be singular. Non-square matrices (-by- matrices for which ) do not hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Method Of Moments (statistics)
In statistics, the method of moments is a method of estimation of population parameters. The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest. Those expressions are then set equal to the sample moments. The number of such equations is the same as the number of parameters to be estimated. Those equations are then solved for the parameters of interest. The solutions are estimates of those parameters. The method of moments was introduced by Pafnuty Chebyshev in 1887 in the proof of the central limit theorem. The idea of matching empirical moments of a distribution to the population moments dates back at least to Pearson. Method Suppose that the problem is to estimate k unknown parameters \theta_, \theta_2, \dots, \theta_k characterizing the distribution f_W(w; \theta) of the random va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hidden Markov Model
A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process — call it X — with unobservable ("''hidden''") states. As part of the definition, HMM requires that there be an observable process Y whose outcomes are "influenced" by the outcomes of X in a known way. Since X cannot be observed directly, the goal is to learn about X by observing Y. HMM has an additional requirement that the outcome of Y at time t=t_0 must be "influenced" exclusively by the outcome of X at t=t_0 and that the outcomes of X and Y at t handwriting recognition, handwriting, gesture recognition, part-of-speech tagging, musical score following, partial discharges and bioinformatics. Definition Let X_n and Y_n be discrete-time stochastic processes and n\geq 1. The pair (X_n,Y_n) is a ''hidden Markov model'' if * X_n is a Markov process whose behavior is not directly observable ("hidden"); * \operatorname\bigl(Y_n \i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Binomial Transform
In combinatorics, the binomial transform is a sequence transformation (i.e., a transform of a sequence) that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial transform to the sequence associated with its ordinary generating function. Definition The binomial transform, ''T'', of a sequence, , is the sequence defined by :s_n = \sum_^n (-1)^k a_k. Formally, one may write :s_n = (Ta)_n = \sum_^n T_ a_k for the transformation, where ''T'' is an infinite-dimensional operator with matrix elements ''T''''nk''. The transform is an involution, that is, :TT = 1 or, using index notation, :\sum_^\infty T_T_ = \delta_ where \delta_ is the Kronecker delta. The original series can be regained by :a_n=\sum_^n (-1)^k s_k. The binomial transform of a sequence is just the ''n''th forward differences of the sequence, with odd differences carrying a negative sign, namely: :\begin s_0 &= a_0 \\ s_1 &= - (\Delta a) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]