HOME
*





Halley's Method
In numerical analysis, Halley's method is a root-finding algorithm used for functions of one real variable with a continuous second derivative. It is named after its inventor Edmond Halley. The algorithm is second in the class of Householder's methods, after Newton's method. Like the latter, it iteratively produces a sequence of approximations to the root; their rate of convergence to the root is cubic. Multidimensional versions of this method exist. Halley's method exactly finds the roots of a linear-over-linear Padé approximation to the function, in contrast to Newton's method or the Secant method which approximate the function linearly, or Muller's method which approximates the function quadratically. Method Edmond Halley was an English mathematician who introduced the method now called by his name. Halley's method is a numerical algorithm for solving the nonlinear equation ''f''(''x'') = 0. In this case, the function ''f'' has to be a function of one real variable. The me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root-finding Algorithm
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function , from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number such that . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound). Solving an equation is the same as finding the roots of the function . Thus root-finding algorithms allow solving any equation defined by continuous functions. However, most root-finding algorithms do not guarantee that they will find all the roots; in particular, if such an algorithm does not find any root, that does not mean that no root exists. Most num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edmond Halley
Edmond (or Edmund) Halley (; – ) was an English astronomer, mathematician and physicist. He was the second Astronomer Royal in Britain, succeeding John Flamsteed in 1720. From an observatory he constructed on Saint Helena in 1676–77, Halley catalogued the southern celestial hemisphere and recorded a transit of Mercury across the Sun. He realised that a similar transit of Venus could be used to determine the distances between Earth, Venus, and the Sun. Upon his return to England, he was made a fellow of the Royal Society, and with the help of King Charles II, was granted a master's degree from Oxford. Halley encouraged and helped fund the publication of Isaac Newton's influential ''Philosophiæ Naturalis Principia Mathematica'' (1687). From observations Halley made in September 1682, he used Newton's laws of motion to compute the periodicity of Halley's Comet in his 1705 ''Synopsis of the Astronomy of Comets''. It was named after him upon its predicted return in 1758, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Householder's Method
In mathematics, and more specifically in numerical analysis, Householder's methods are a class of root-finding algorithms that are used for functions of one real variable with continuous derivatives up to some order . Each of these methods is characterized by the number , which is known as the ''order'' of the method. The algorithm is iterative and has a rate of convergence of . These methods are named after the American mathematician Alston Scott Householder. Method Householder's method is a numerical algorithm for solving the nonlinear equation . In this case, the function has to be a function of one real variable. The method consists of a sequence of iterations :x_ = x_n + d\; \frac beginning with an initial guess . If is a times continuously differentiable function and is a zero of but not of its derivative, then, in a neighborhood of , the iterates satisfy: :, x_ - a , \le K \cdot ^ , for some K > 0.\! This means that the iterates converge to the zero if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Newton's Method
In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function defined for a real variable , the function's derivative , and an initial guess for a root of . If the function satisfies sufficient assumptions and the initial guess is close, then :x_ = x_0 - \frac is a better approximation of the root than . Geometrically, is the intersection of the -axis and the tangent of the graph of at : that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as :x_ = x_n - \frac until a sufficiently precise value is reached. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rate Of Convergence
In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence (x_n) that converges to x^* is said to have ''order of convergence'' q \geq 1 and ''rate of convergence'' \mu if : \lim _ \frac=\mu. The rate of convergence \mu is also called the ''asymptotic error constant''. Note that this terminology is not standardized and some authors will use ''rate'' where this article uses ''order'' (e.g., ). In practice, the rate and order of convergence provide useful insights when using iterative methods for calculating numerical approximations. If the order of convergence is higher, then typically fewer iterations are necessary to yield a useful approximation. Strictly speaking, however, the asymptotic behavior of a sequence does not give conclusive information about any finite part of the sequence. Similar concepts are used for discretization methods. The solu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Padé Approximant
In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating. The technique was developed around 1890 by Henri Padé, but goes back to Georg Frobenius, who introduced the idea and investigated the features of rational approximations of power series. The Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. For these reasons Padé approximants are used extensively in computer calculations. They have also been used as auxiliary functions in Diophantine approximation and transcendental number theory, though for sharp results ad hoc methods— in some sense inspired by the Padé theory— typically replace them. Since Padé approximant is a rational function, an artificial si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secant Method
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function ''f''. The secant method can be thought of as a finite-difference approximation of Newton's method. However, the secant method predates Newton's method by over 3000 years. The method For finding a zero of a function , the secant method is defined by the recurrence relation. : x_n = x_ - f(x_) \frac = \frac. As can be seen from this formula, two initial values and are required. Ideally, they should be chosen close to the desired zero. Derivation of the method Starting with initial values and , we construct a line through the points and , as shown in the picture above. In slope–intercept form, the equation of this line is :y = \frac(x - x_1) + f(x_1). The root of this linear function, that is the value of such that is :x = x_1 - f(x_1) \frac. We then use this new value of as and repeat the process, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Muller's Method
Muller's method is a root-finding algorithm, a numerical method for solving equations of the form ''f''(''x'') = 0. It was first presented by David E. Muller in 1956. Muller's method is based on the secant method, which constructs at every iteration a line through two points on the graph of ''f''. Instead, Muller's method uses three points, constructs the parabola through these three points, and takes the intersection of the ''x''-axis with the parabola to be the next approximation. Recurrence relation Muller's method is a recursive method which generates an approximation of the root ξ of ''f'' at each iteration. Starting with the three initial values ''x''0, ''x''−1 and ''x''−2, the first iteration calculates the first approximation ''x''1, the second iteration calculates the second approximation ''x''2, the third iteration calculates the third approximation ''x''3, etc. Hence the ''k''''th'' iteration generates approximation ''x''''k''. Each iteration takes as input the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Second Derivative
In calculus, the second derivative, or the second order derivative, of a function is the derivative of the derivative of . Roughly speaking, the second derivative measures how the rate of change of a quantity is itself changing; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation: :\mathbf = \frac = \frac, where ''a'' is acceleration, ''v'' is velocity, ''t'' is time, ''x'' is position, and d is the instantaneous "delta" or change. The last expression \tfrac is the second derivative of position (x) with respect to time. On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the opposite way ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Taylor's Theorem
In calculus, Taylor's theorem gives an approximation of a ''k''-times differentiable function around a given point by a polynomial of degree ''k'', called the ''k''th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order ''k'' of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial. Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, although an earlier version of the result was already mentioned in 1671 by James Gregory. Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis. It gives simple arithmetic fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]