HITAC S-3800
   HOME
*





HITAC S-3800
The HITAC S-3000 is a former family of vector supercomputers, which was developed, manufactured and marketed by Hitachi. Announced in April 1992, the family succeeded the HITAC S-820. The S-3000 family comprised the low-end and mid-range S-3600 models and the high-end S-3800 models. Unlike Hitachi's previous generations of supercomputers, the S-3000 family was marketed outside Japan. The S-3600 was an improved version of the S-820 implemented in more modern semiconductor technology. The S-3800 was a new design, differing significantly from the previous generations. It was a ''parallel vector processor'' and supported one to four vector processors. In 1994, the S-3000 family was complemented by an MPP machine that used superscalar microprocessors, the SR2001. Hitachi eventually discontinued development of vector supercomputers in favor of this approach. The S-3000 family was replaced in 2000 by the SR8000, making it the last vector supercomputer from Hitachi. The CPU archite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Processor
In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data called ''vectors''. This is in contrast to scalar processors, whose instructions operate on single data items only, and in contrast to some of those same scalar processors having additional single instruction, multiple data (SIMD) or SWAR Arithmetic Units. Vector processors can greatly improve performance on certain workloads, notably numerical simulation and similar tasks. Vector processing techniques also operate in video-game console hardware and in graphics accelerators. Vector machines appeared in the early 1970s and dominated supercomputer design through the 1970s into the 1990s, notably the various Cray platforms. The rapid fall in the price-to-performance ratio of conventional microprocessor designs led to a decline in vector supercom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supercomputer
A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructions per second (MIPS). Since 2017, there have existed supercomputers which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS). For comparison, a desktop computer has performance in the range of hundreds of gigaFLOPS (1011) to tens of teraFLOPS (1013). Since November 2017, all of the world's fastest 500 supercomputers run on Linux-based operating systems. Additional research is being conducted in the United States, the European Union, Taiwan, Japan, and China to build faster, more powerful and technologically superior exascale supercomputers. Supercomputers play an important role in the field of computational science, and are used for a wide range of computationally intensive tasks in var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hitachi
() is a Japanese multinational corporation, multinational Conglomerate (company), conglomerate corporation headquartered in Chiyoda, Tokyo, Japan. It is the parent company of the Hitachi Group (''Hitachi Gurūpu'') and had formed part of the Nissan Group, Nissan ''zaibatsu'' and later DKB Group and Fuyo Group of companies before DKB and Fuji Bank (the core Fuyo Group company) merged into the Mizuho Financial Group. As of 2020, Hitachi conducts business ranging from Information technology, IT, including Artificial intelligence, AI, the Internet of things, Internet of Things, and big data, to infrastructure. Hitachi is listed on the Tokyo Stock Exchange and Nagoya Stock Exchange and its Tokyo listing is a constituent of the Nikkei 225 and TOPIX Core30 indices. It is ranked 38th in the 2012 Fortune Global 500 and 129th in the 2012 Forbes Global 2000. History Hitachi was founded in 1910 by electrical engineer Namihei Odaira (1874–1951) in Ibaraki Prefecture. The company's firs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HITAC S-820
The HITAC S-820 is a family of vector supercomputers developed, manufactured and marketed by Hitachi. Announced in July 1987, it was Hitachi's second supercomputer, succeeding the HITAC S-810. The S-820 is categorized as a second generation Japanese supercomputer. The S-820 system has both a scalar and vector processor, similar to the architecture of the S-810. The scalar processor is based on the Hitachi M-series mainframe processor, so is compatible with its operating system. The S-820 was reported to have a theoretical peak performance of 2 GFLOPS, and a theoretical maximum computational performance of 3 GFLOPS. Initially the S-820 was available in two variations: the S-820 model 80 and the S-820 model 60 (hereafter S-820/80 and S-820/60). The S-820/80 had double the vector computational capability, as well as more storage capability, compared to the S-820/60. The peak performance of the S-820/80 was 3 GFLOPS, and that of the S-820/60 as 1.5 GFLOPS. There were fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superscalar
A superscalar processor is a CPU that implements a form of parallelism called instruction-level parallelism within a single processor. In contrast to a scalar processor, which can execute at most one single instruction per clock cycle, a superscalar processor can execute more than one instruction during a clock cycle by simultaneously dispatching multiple instructions to different execution units on the processor. It therefore allows more throughput (the number of instructions that can be executed in a unit of time) than would otherwise be possible at a given clock rate. Each execution unit is not a separate processor (or a core if the processor is a multi-core processor), but an execution resource within a single CPU such as an arithmetic logic unit. In Flynn's taxonomy, a single-core superscalar processor is classified as an SISD processor (single instruction stream, single data stream), though a single-core superscalar processor that supports short vector operations could ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hitachi SR2201
The Hitachi SR2201 was a distributed memory parallel system that was introduced in March 1996 by Hitachi. Its processor, the 150 MHz HARP-1E based on the PA-RISC 1.1 architecture, solved the cache miss penalty by pseudo vector processing (PVP). In PVP, data was loaded by prefetching to a special register bank, bypassing the cache. Each processor had a peak performance of 300 MFLOPS, giving the SR2201 a peak performance of 600 GFLOPS. Up to 2048 RISC processors could be connected via a high-speed three-dimensional crossbar Crossbar may refer to: Structures * Latch (hardware), a post barring a door * Top tube of a bicycle frame * Crossbar, the horizontal member of various sports goals * Crossbar, a horizontal member of an electricity pylon Other * In electronic ... network, which was able to transfer data at 300 MB/s over each link. In February 1996, two 1024-node systems were installed at the University of Tokyo and the University of Tsukuba. The latter was exten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hitachi SR8000
The Hitachi SR8000 is a high-performance supercomputer manufactured by the Japanese Hitachi Ltd. c. 2001. It comprises 4 to 512 nodes, each containing multiple Hitachi RISC microprocessors. Cooperative microprocessors are assigned to the same address space for synchronicity within each node. In 2002, Yasumasa Kanada was a Japanese computer scientist most known for his numerous world records over the past three decades for calculating digits of . He set the record 11 of the past 21 times. Kanada was a professor in the Department of Information Science at ... calculated the decimal expansion of pi to 1.24 trillion digits using this model. References External linksHitachi SR8000 in Historical Computers in Japan Hitachi Hitachi supercomputers {{computer-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IBM System/370
The IBM System/370 (S/370) is a model range of IBM mainframe computers announced on June 30, 1970, as the successors to the System/360 family. The series mostly maintains backward compatibility with the S/360, allowing an easy migration path for customers; this, plus improved performance, were the dominant themes of the product announcement. In September 1990, the System/370 line was replaced with the System/390. Evolution The original System/370 line was announced on June 30, 1970, with first customer shipment of the Models 155 and 165 planned for February 1971 and April 1971 respectively. The 155 first shipped in January 1971. System/370 underwent several architectural improvements during its roughly 20-year lifetime. The following features mentioned in Principles of Operation are either optional on S/360 but standard on S/370, introduced with S/370 or added to S/370 after announcement. *Branch and Save *Channel Indirect Data Addressing *Channel-Set Switching *Clear I/O *Co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




OSF/1
OSF/1 is a variant of the Unix operating system developed by the Open Software Foundation during the late 1980s and early 1990s. OSF/1 is one of the first operating systems to have used the Mach kernel developed at Carnegie Mellon University, and is probably best known as the native Unix operating system for DEC Alpha architecture systems. In 1994, after AT&T had sold UNIX System V to Novell and the rival Unix International consortium had disbanded, the Open Software Foundation ceased funding of research and development of OSF/1. The Tru64 UNIX variant of OSF/1 was supported by HP until 2012. Background In 1988, during the so-called "Unix wars", Digital Equipment Corporation (DEC) joined with IBM, Hewlett-Packard, and others to form the Open Software Foundation (OSF) to develop a version of Unix named OSF/1. The aim was to compete with System V Release 4 from AT&T Corporation and Sun Microsystems, and it has been argued that a primary goal was for the operating system to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hitachi VOS3
Multiple Virtual Storage, more commonly called MVS, was the most commonly used operating system on the System/370 and System/390 IBM mainframe computers. IBM developed MVS, along with OS/VS1 and SVS, as a successor to OS/360. It is unrelated to IBM's other mainframe operating system lines, e.g., VSE, VM, TPF. Overview First released in 1974, MVS was extended by program products with new names multiple times: * first to MVS/SE (MVS/System Extensions),some print media used the singular, MVS/System Extension: Computerworld, 15 Dec 1980 - Page 5; 26 June 1978 - Page 8 * next to MVS/SP (MVS/System Product) Version 1, * next to MVS/XA (MVS/eXtended Architecture), * next to MVS/ESA (MVS/Enterprise Systems Architecture), * then to OS/390 and * finally to z/OS (when 64-bit support was added with the zSeries models). IBM added UNIX support (originally called OpenEdition MVS) in MVS/SP V4.3 and has obtained POSIX and UNIX™ certifications at several different levels from IEEE, X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HITAC S-810
The HITAC S-810 is a family of vector supercomputers developed, manufactured and marketed by Hitachi. The S-810, first announced in August 1982, was the second Japanese supercomputer, following the Fujitsu VP-200 (July 1982) but predating the NEC SX-2 (April 1983). The S-810 was Hitachi's first supercomputer, although the company had previously built a vector processor, the IAP. The first system shipped was a top-end S-810/20 model, which was delivered to the University of Tokyo's Large Computer Center in October 1983. The S-810 was succeeded as Hitachi's top-end supercomputer by the HITAC S-820 announced in July 1987. Architecture The S-810 implements a Hitachi-designed extension of the IBM System/370 instruction set architecture with 83 vector instructions (80 in the S-810/5 and S-810/10). The vector instructions are ''register-to-register'', meaning that they do not directly reference memory. The scalar processor is a Hitachi HITAC M-280H mainframe with a 28 nanosecond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supercomputing In Japan
Japan operates a number of centers for supercomputing which hold world records in speed, with the K computer becoming the world's fastest in June 2011. and Fugaku took the lead in June 2020, and furthered it, as of November 2020, to 3 times faster than number two computer. The K computer's performance was impressive, according to professor Jack Dongarra who maintains the TOP500 list of supercomputers, and it surpassed its next 5 competitors combined. The K computer cost US$10 million a year to operate. Previous records Japan's entry into supercomputing began in the early 1980s. In 1982, Osaka University's LINKS-1 Computer Graphics System used a massively parallel processing architecture, with 514 microprocessors, including 257 Zilog Z8000, Zilog Z8001 Central processing unit, control processors and 257 iAPX IAPX 86, 86/20 Floating-point unit, floating-point processors. It was mainly used for rendering realistic 3D computer graphics, 3D computer graphics. It was the world's most ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]