HDAC7
   HOME
*





HDAC7
Histone deacetylase 7 is an enzyme that in humans is encoded by the ''HDAC7'' gene. Function Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene has sequence homology to members of the histone deacetylase family. This gene is orthologous to mouse HDAC7 gene whose protein promotes repression mediated via transcriptional corepressor SMRT. Multiple alternatively spliced transcript variants encoding several isoforms have been found for this gene. HDAC7 has both structural and functional similarity to HDACs 4, 5, and 9, as these four HDACs make up the Class IIa of HDACs in higher eukaryotes. Class IIa HDACs are phosphorylated by calcium/calmodulin dependent-kindase (CaMK) and protein kinase D (PKD) in response to kinase-dependent signaling. HDAC7 possesses little intrinsic deacetylase a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Endothelin Receptor Type A
Endothelin receptor type A, also known as ETA, is a human G protein-coupled receptor. Interactions Endothelin receptor type A has been shown to interact with HDAC7A and HTATIP. See also * Endothelin receptor There are at least four known endothelin receptors, ETA, ETB1, ETB2 and ETC, all of which are G protein-coupled receptors whose activation result in elevation of intracellular-free calcium, which constricts the smooth muscles of the blood vessels ... References External links * Further reading * * * * * * * * * * * * * * * * * * * * * * G protein-coupled receptors {{transmembranereceptor-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HTATIP
Histone acetyltransferase KAT5 is an enzyme that in humans is encoded by the ''KAT5'' gene. It is also commonly identified as TIP60. The protein encoded by this gene belongs to the MYST family of histone acetyl transferases (HATs) and was originally isolated as an HIV-1 TAT-interactive protein. HATs play important roles in regulating chromatin remodeling, transcription and other nuclear processes by acetylating histone and nonhistone proteins. This protein is a histone acetylase that has a role in DNA repair and apoptosis and is thought to play an important role in signal transduction. Alternative splicing of this gene results in multiple transcript variants. Structure The structure of KAT5 includes an acetyl CoA binding domain and a zinc finger in the MYST domain, and a CHROMO domain. Excess acetyl CoA is necessary for acetylation of histones. The zinc finger domain has been shown to aid in the acetylation process as well. The CHROMO domain aids in KAT5 ability to bind chromati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Receptor Co-repressor 1
The nuclear receptor co-repressor 1 also known as thyroid-hormone- and retinoic-acid-receptor-associated co-repressor 1 (TRAC-1) is a protein that in humans is encoded by the ''NCOR1'' gene. NCOR1 is a transcriptional coregulatory protein which contains several nuclear receptor interacting domains. In addition, NCOR1 appears to recruit histone deacetylases to DNA promoter regions. Hence NCOR1 assists nuclear receptors in the down regulation of gene expression. Loss of function of this protein significantly increases the strength and power of mouse muscles. Family It is a member of the family of nuclear receptor corepressors; the other human protein that is a member of that family is Nuclear receptor co-repressor 2.UniProNuclear receptor corepressors familyPage accessed June 26, 2016 Interactions Nuclear receptor co-repressor 1 has been shown to interact with: * Androgen receptor, * CHD1, * Calcitriol receptor * GPS2, * Glucocorticoid receptor, * HDAC3, * HDAC4, * H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




HDAC3
Histone deacetylase 3 is an enzyme encoded by the ''HDAC3'' gene in both humans and mice. Function Histones are highly alkaline proteins that package and order DNA into structural units called nucleosomes, which comprise the major protein component of chromatin. The posttranslational and enzymatically mediated lysine acetylation and deacetylation of histone tails changes the local chromatin structure through altering the electrostatic attraction between the negatively charged DNA backbone and histones. HDAC3 is a Class I member of the histone deacetylase superfamily (comprising four classes based on function and DNA sequence homology) that is recruited to enhancers to modulate both the epigenome and nearby gene expression. HDAC3 is found exclusively in the cell nucleus where it is the sole endogenous histone deacetylase biochemically purified in the nuclear-receptor corepressor complex containing NCOR and SMRT (NCOR2). Thus, HDAC3 unlike other HDACs, has a unique role in mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Histone Deacetylase
Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. Its action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. HDAC super family Together with the acetylpolyamine amidohydrolases and the acetoin utilization proteins, the histone deacetylases form an ancient protein superfamily known as the histone deacetylase superfamily. Classes of HDACs in higher eukaryotes HDACs, are classified in four classes depending on sequence homology to the yeast original enzymes and domain organization: HDAC (except class III) contain zinc and are known as Zn2+-dependent hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IKZF1
DNA-binding protein Ikaros also known as Ikaros family zinc finger protein 1 is a protein that in humans is encoded by the ''IKZF1'' gene. Ikaros - transcription factor Ikaros is a transcription factor that is encoded by the ''IKZF'' genes of the Ikaros family zinc finger group. Zinc finger is a small structural motif of protein that allows protein binding to DNA or RNA molecule that is characterized by the coordination of one or more zinc ions (Zn2+) in order to stabilize the fold. Ikaros displays crucial functions in the hematopoietic system and is a known regulator of immune cells development, mainly in early B cells, CD4+ T cells. Its dysfunction has been linked to the development of chronic lymphocytic leukemia. In particular, Ikaros has been found in recent years to be a major tumor suppressor involved in human B-cell acute lymphoblastic leukemia and that it also has a part in the differentiation and function of individual T helper cells. Ikaros also has a role during t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BCL6
Bcl-6 (B-cell lymphoma 6) is a protein that in humans is encoded by the ''BCL6'' gene. BCL6 is a master transcription factor for regulation of T follicular helper cells (TFH cells) proliferation. BCL6 has three evolutionary conserved structural domains. The interaction of these domains with corepressors allows for germinal center development and leads to B cell proliferation. The ''deletion'' of BCL6 is known to lead to failure to germinal center formation in the follicles of the lymph nodes, preventing B cells from undergoing somatic hypermutation. ''Mutations'' in BCL6 can lead to B cell lymphomas because it promotes unchecked B cell growth. Clinically, BCL6 can be used to diagnose B cell lymphomas and is shown to be upregulated in a number of cancers. Other BCL genes, including BCL2, BCL3, BCL5, BCL7A, BCL9, and BCL10, also have clinical significance in lymphoma. Normal Physiological Function Structure The protein encoded by the BCL6 gene is a zinc finger transcription f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macrophages
Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. The process is called phagocytosis, which acts to defend the host against infection and injury. These large phagocytes are found in essentially all tissues, where they patrol for potential pathogens by amoeboid movement. They take various forms (with various names) throughout the body (e.g., histiocytes, Kupffer cells, alveolar macrophages, microglia, and others), but all are part of the mononuclear phagocyte system. Besides phagocytosis, they play a critical role in nonspecific defense (innate immunity) and also help initiate specific defense mechanisms (adaptive immunity) by recruiting other immun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

HIF-1alpha
Hypoxia-inducible factor 1-alpha, also known as HIF-1-alpha, is a subunit of a heterodimeric transcription factor hypoxia-inducible factor 1 (HIF-1) that is encoded by the ''HIF1A'' gene. The Nobel Prize in Physiology or Medicine 2019 was awarded for the discovery of HIF. HIF1A is a basic helix-loop-helix PAS domain containing protein, and is considered as the master transcriptional regulator of cellular and developmental response to hypoxia. The dysregulation and overexpression of ''HIF1A'' by either hypoxia or genetic alternations have been heavily implicated in cancer biology, as well as a number of other pathophysiologies, specifically in areas of vascularization and angiogenesis, energy metabolism, cell survival, and tumor invasion. Two other alternative transcripts encoding different isoforms have been identified. Structure HIF1 is a heterodimeric basic helix-loop-helix structure that is composed of HIF1A, the alpha subunit (this protein), and the aryl hydrocarbon recep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lipopolysaccharide
Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide that are bacterial toxins. They are composed of an O-antigen, an outer core, and an inner core all joined by a covalent bond, and are found in the outer membrane of Gram-negative bacteria. Today, the term ''endotoxin'' is often used synonymously with LPS, although there are a few endotoxins (in the original sense of toxins that are inside the bacterial cell that are released when the cell disintegrates) that are not related to LPS, such as the so-called delta endotoxin proteins produced by '' Bacillus thuringiensis''. Lipopolysaccharides can have substantial impacts on human health, primarily through interactions with the immune system. LPS is a potent activator of the immune system and pyrogen (agent that causes fever). In severe cases, LPS can play a role in causing septic shock. In lower levels and over a longer time period, there is evidence LPS may play an important and harmful role ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures. Like all catalysts, enzymes increase the reaction ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]