HOME





Homomorphic Signatures For Network Coding
Network coding has been shown to optimally use bandwidth in a network, maximizing information flow but the scheme is very inherently vulnerable to pollution attacks by malicious nodes in the network. A node injecting garbage can quickly affect many receivers. The pollution of network packets spreads quickly since the output of (even an) honest node is corrupted if at least one of the incoming packets is corrupted. An attacker can easily corrupt a packet even if it is encrypted by either forging the signature or by producing a collision under the hash function. This will give an attacker access to the packets and the ability to corrupt them. Denis Charles, Kamal Jain and Kristin Lauter designed a new homomorphic encryption signature scheme for use with network coding to prevent pollution attacks. The homomorphic property of the signatures allows nodes to sign any linear combination of the incoming packets without contacting the signing authority. In this scheme it is computationall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Network Coding
In computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations. Linear network coding may be used to improve a network's throughput, efficiency, and scalability, as well as reducing attacks and eavesdropping. The Node (networking), nodes of a network take ''several'' packets and combine for transmission. This process may be used to attain the maximum possible information flow network, flow in a Network theory, network. It has been proven that, theoretically, linear code, linear coding is enough to achieve the upper bound in multicast problems with one source. However linear coding is not sufficient in general; even for more general versions of linearity such as convolutional coding and filter-bank coding. Finding optimal coding solutions for general network problems with arbitrary demands is a hard problem, which can be NP-hard and even Undecidable problem, undecidable. Encodin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Receiver (information Theory)
The receiver in information theory is the receiving end of a communication channel. It receives decoded messages/information from the sender, who first encoded them. Sometimes the receiver is modeled so as to include the decoder. Real-world receivers like radio receivers or telephones can not be expected to receive as much information as predicted by the noisy channel coding theorem. Real-world receivers include: * For modulated radio waves, a radio receiver ** For converting specifically AM modulated radio waves to sound, an AM Tuner ** For converting specifically FM modulated radio waves to sound, an FM Tuner ** For converting specifically television transmissions to video and audio, a television tuner, which may be a component of an AV receiver * For modulated ultrasound waves, a receiver (modulated ultrasound) * For converting analog electrical signals on a wire to audio, a speaker system, which may be a component of an audio headset or telephone handset. * For readin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pairing
In mathematics, a pairing is an ''R''- bilinear map from the Cartesian product of two ''R''- modules, where the underlying ring ''R'' is commutative. Definition Let ''R'' be a commutative ring with unit, and let ''M'', ''N'' and ''L'' be ''R''-modules. A pairing is any ''R''-bilinear map e:M \times N \to L. That is, it satisfies :e(r\cdot m,n)=e(m,r \cdot n)=r\cdot e(m,n), :e(m_1+m_2,n)=e(m_1,n)+e(m_2,n) and e(m,n_1+n_2)=e(m,n_1)+e(m,n_2) for any r \in R and any m,m_1,m_2 \in M and any n,n_1,n_2 \in N . Equivalently, a pairing is an ''R''-linear map :M \otimes_R N \to L where M \otimes_R N denotes the tensor product of ''M'' and ''N''. A pairing can also be considered as an ''R''-linear map \Phi : M \to \operatorname_ (N, L) , which matches the first definition by setting \Phi (m) (n) := e(m,n) . A pairing is called perfect if the above map \Phi is an isomorphism of ''R''-modules and the other evaluation map \Phi'\colon N\to \operatorname_(M,L) is an isomorphism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Roots Of Unity
In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. It is occasionally called a de Moivre number after French mathematician Abraham de Moivre. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation z^n = 1. Unless otherwise specified, the root ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weil Pairing
In mathematics, the Weil pairing is a pairing (bilinear form, though with multiplicative notation) on the points of order dividing ''n'' of an elliptic curve ''E'', taking values in ''n''th roots of unity. More generally there is a similar Weil pairing between points of order ''n'' of an abelian variety and its dual. It was introduced by André Weil (1940) for Jacobians of curves, who gave an abstract algebraic definition; the corresponding results for elliptic functions were known, and can be expressed simply by use of the Weierstrass sigma function. Formulation Choose an elliptic curve ''E'' defined over a field ''K'', and an integer ''n'' > 0 (we require ''n'' to be coprime to char(''K'') if char(''K'') > 0) such that ''K'' contains a primitive nth root of unity. Then the ''n''-torsion on E(\overline) is known to be a Cartesian product of two cyclic groups of order ''n''. The Weil pairing produces an ''n''-th root of unity :w(P,Q) \in \mu_n by mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curves
In mathematics, an elliptic curve is a Smoothness, smooth, Projective variety, projective, algebraic curve of Genus of an algebraic curve, genus one, on which there is a specified point . An elliptic curve is defined over a field (mathematics), field and describes points in , the Cartesian product of with itself. If the field's characteristic (algebra), characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be Singular point of a curve, non-singular, which means that the curve has no cusp (singularity), cusps or Self-intersection, self-intersections. (This is equivalent to the condition , that is, being square-free polynomial, square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public-key Cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. There are many kinds of public-key cryptosystems, with different security goals, including digital signature, Diffie–Hellman key exchange, Key encapsulation mechanism, public-key key encapsulation, and public-key encryption. Public key algorithms are fundamental security primitives in modern cryptosystems, including applications and protocols that offer assurance of the confidentiality and authenticity of electronic communications and data storage. They underpin numerous Internet standards, such as Transport Layer Security, T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Curve Cryptography
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys to provide equivalent security, compared to cryptosystems based on modular exponentiation in Galois fields, such as the RSA cryptosystem and ElGamal cryptosystem. Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme. They are also used in several integer factorization algorithms that have applications in cryptography, such as Lenstra elliptic-curve factorization. History The use of elliptic curves in cryptography was suggested independently by Neal Koblitz and Victor S. Miller in 1985. Elliptic curve cryptography algorithms entered wide use in 2004 to 2005. In 1999, NIST recommended fifteen elliptic curves. Specifically, FIPS 186 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]