Hodge Filtration
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989). Hodge structures Definition of Hodge structures A pure Hodge structure of integer weight ''n'' consists of an abelian group H_ and a decomposition of its complexification ''H'' into a direct sum of complex subspaces H^, where p+q=n, with the property that the complex conjugate of H^ is H^: :H := H_\otimes_ \Complex = \bigo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
U(1)
In mathematics, the circle group, denoted by \mathbb T or \mathbb S^1, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers. \mathbb T = \. The circle group forms a subgroup of \mathbb C^\times, the multiplicative group of all nonzero complex numbers. Since \mathbb C^\times is abelian, it follows that \mathbb T is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure \theta: \theta \mapsto z = e^ = \cos\theta + i\sin\theta. This is the exponential map for the circle group. The circle group plays a central role in Pontryagin duality and in the theory of Lie groups. The notation \mathbb T for the circle group stems from the fact that, with the standard topology (see below), the circle group is a 1-torus. More generally, \mathbb T^n (the direct product of \mathbb T with it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for such a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
L-adic Cohomology
In mathematics, the -adic number system for any prime number extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discret ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Resolution Of Singularities
In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety ''V'' has a resolution, a non-singular variety ''W'' with a proper birational map ''W''→''V''. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic ''p'' it is an open problem in dimensions at least 4. Definitions Originally the problem of resolution of singularities was to find a nonsingular model for the function field of a variety ''X'', in other words a complete non-singular variety ''X′'' with the same function field. In practice it is more convenient to ask for a different condition as follows: a variety ''X'' has a resolution of singularities if we can find a non-singular variety ''X′'' and a proper birational map from ''X′'' to ''X''. The condition that the map is proper is needed to exclude trivial solutions, such as taking ''X′'' to be the subvariety of non- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heisuke Hironaka
is a Japanese mathematician who was awarded the Fields Medal in 1970 for his contributions to algebraic geometry. Career Hironaka entered Kyoto University in 1949. After completing his undergraduate studies at Kyoto University, he received his Ph.D. in 1960 from Harvard University while under the direction of Oscar Zariski. Hironaka held teaching positions at Brandeis University from 1960-1963, Columbia University in 1964, and Kyoto University from 1975 to 1988. He was a professor of mathematics at Harvard University from 1968 until becoming ''emeritus'' in 1992 and was a president of Yamaguchi University from 1996 to 2002. Research In 1964, Hironaka proved that singularities of algebraic varieties admit resolutions in characteristic zero. This means that any algebraic variety can be replaced by (more precisely is birationally equivalent to) a similar variety which has no singularities. He also introduced Hironaka's example showing that a deformation of Kähler manifolds need ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motive (algebraic Geometry)
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety. In the formulation of Grothendieck for smooth projective varieties, a motive is a triple (X, p, m), where ''X'' is a smooth projective variety, p: X \vdash X is an idempotent correspondence, and ''m'' an integer, however, such a triple contains almost no information outside the context of Grothendieck's category of pure motives, where a morphism from (X, p, m) to (Y, q, n) is given by a correspondence of degree n-m. A more object-focused approach is taken by Pierre Deligne in ''Le Groupe Fondamental de la Droite Projective Moins Trois Points''. In that article, a motive is a "system of realisations" – that is, a tupl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weil Conjectures
In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory. The conjectures concern the generating functions (known as local zeta functions) derived from counting points on algebraic varieties over finite fields. A variety over a finite field with elements has a finite number of rational points (with coordinates in the original field), as well as points with coordinates in any finite extension of the original field. The generating function has coefficients derived from the numbers of points over the extension field with elements. Weil conjectured that such ''zeta functions'' for smooth varieties are rational functions, satisfy a certain functional equation, and have their zeros in restricted places. The last two parts were consciously modelled on the Riemann zeta function, a kind of generating f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jean-Pierre Serre
Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003. Biography Personal life Born in Bages, Pyrénées-Orientales, France, to pharmacist parents, Serre was educated at the Lycée de Nîmes and then from 1945 to 1948 at the École Normale Supérieure in Paris. He was awarded his doctorate from the Sorbonne in 1951. From 1948 to 1954 he held positions at the Centre National de la Recherche Scientifique in Paris. In 1956 he was elected professor at the Collège de France, a position he held until his retirement in 1994. His wife, Professor Josiane Heulot-Serre, was a chemist; she also was the director of the Ecole Normale Supérieure de Jeunes Filles. Their daughter is the former French diplomat, historian and writer Claudine Monteil. The French mathematician Denis S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |